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Abstract. Kulikovskiy and Sveshikova (1977), then Beghin (1981–92) have suggested
modelling powder-snow avalanches as buoyant clouds of semi-elliptic shape. Different
versions of the equations of motion describing the cloud motion have been put forth
by these authors and, subsequently, other researchers. In the last version of his model,
Beghin took snow entrainment into account by assuming that all the newly fallen
snow can be incorporated into the cloud as a result of the erosive action of the front.
The present article examines the reliability of this treatment by considering laboratory
experiments and a case study. Laboratory experiments were carried out in order to
better understand how an unsteady turbulent gravity current entrains particles from
the bed. Comparing observations obtained with density and turbidity currents reveals
different entrainment mechanisms. Beghin’s model has been applied to the Sionne site
(Switzerland), in which a number of powder snow avalanches have been monitored.
Comparison of numerical and field data shows a very good agreement as regards the
velocity front. In contrast, the model fails to provide the correct order of magnitude
for the impact pressure.

1 Introduction

A number of gravity-driven flows are in the form of a particle cloud de-
scending a slope. Typical examples include powder-snow avalanche in
mountainous areas and pyroclastic flows from volcanoes; since most nat-
ural rapid mass movements of materials can lead to the development of
an airborne of particles made up of particle in suspension in the air, dense
flows can also sometimes transform into a particle cloud. Evans (1983)
reported the case of a rockfall, in which the particle abrasion and flu-
idization was so intense than a large part of its mass transformed into an
airborne. Particle clouds present many similarities with turbidity currents
in the ocean as regards their basic flow mechanisms: in both cases, they
involve a dilute suspension of small solid particles within the same fluid
as the surrounding fluid and the driving force is supplied by the density
difference ∆%̄ between the cloud and the surrounding fluid. There is, how-
ever, a significant difference between atmospheric and marine clouds: the
former are clearly non-Boussinesq flows while for the latter, the Boussi-
nesq approximation holds since the ratio ∆%̄/%a is close to unity.
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Another difference lies in the boundary conditions of the flows: for
turbidity currents, the slope of the continental shelf over they flow is
gently inclined (typically a few degrees), the buoyancy supply is regular,
and the front velocity is weakly dependent on the slope so that turbidity
currents may be seen, at least in a first approximation, as steady cur-
rents. In contrast, for particle clouds down mountain slopes, the ground
inclination is much more pronounced (typically in the range 15–45◦), a
finite volume of material is involved in the release, and the front velocity
is slope-dependent so that flow is mainly unsteady. As shown by Britter
and Linden (1980), bed slope has a significant effect on the entrainment
of the surrounding fluid into the current and, thus, the current shape: for
gentle slopes, the current takes the form of a head slightly deeper than the
following tail while for mild and large slopes, it looks like a semi-elliptic
cloud.

Gravity currents can entrain sediment from the bed. For marine tur-
bidity currents involving silts and sand, Parker et al. (1986) have shown
that a condition for significant erosion and damage potential is that the
current reaches a sufficiently high velocity and entrains sediments from
the bed. Taking benefit from the steady flow conditions, Parker (1982)
and Parker et al. (1986) demonstrated that there must be a balance in
sediment entrainment and deposition for turbulence not to die in the cur-
rent. The unsteady character and the non-Boussinesq feature of aerial
clouds preclude one to apply the idea developed by Parker to powder-
snow avalanches directly. There is some field evidence that snow entrain-
ment from the snowcover plays a key role in the avalanche dynamics. If
we admit, as a first approximation, that the leading edge velocity is of
dam-break type, that is of the form uf =

√
g′h0, where g′ = g∆%̄/%a

is the reduced gravity and h0 is the front depth. Typically, field obser-
vations provide h0 = O(20) m and uf = O(60) m, thus we must have
∆ρ/ρa = O(20). This means that there must be a significant snow en-
trainment to balance the dilution resulting from the air entrainment. The
objective of the article is to examine this point more accurately.

Various approaches to modelling powder-snow avalanches have been
proposed over the last thirty years. Soviet researchers can be credited
with the first powder snow avalanche models in the 1970s [see Bozhinkiy
& Losev (1998)]. At the same period, Tochon-Danguy and Hopfinger
(1974) proposed a model inspired from Ellison and Turner’s (1959) work
on steady plume. However, it was quickly recognized that powder snow
avalanches are closer to finite-length, unsteady currents than steady den-
sity currents with constant buoyancy supply [Hopfinger & Tochon-Danguy
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1977]. This led researchers to treat the problem differently. Kulikovskiy
and Sveshikova (1977) set forth a fairly simple model (KS model), in
which the cloud was assimilated to a semi-elliptic body whose volume
varies with time. The kinematics was entirely described by the mass cen-
ter position and two geometric parameters of the cloud (the two semi-
axes of the ellipse). The cloud density could vary depending on air and
snow entrainments. Kulikovskiy and Sveshikova obtained a set of four
equations describing the mass, volume, momentum, and turbulent ki-
netic energy balances. The idea was subsequently redeveloped by Beghin
et al. (1981), Fukushima et Parker (1986), Akiyama (1999), etc. During
his thesis, Beghin developed a model inspired from Escudier and Max-
worthy’s (1973) study on turbulent thermal formation and very close to
the KS model. His first model, presented in an article with Hopfinger and
Britter (1981), focused on Boussinesq clouds and ignored particle entrain-
ment, sedimentation, and basal friction. Later on, he extended his former
model by dealing with the more realistic case of non-Boussinesq clouds,
with varying supply in materials due to sedimentation or entrainment
from the bed. The chief difference between KS and Beghin’s model is
that Kulikovskiy and Sveshikova considered a fourth equation (turbulent
kinetic balance equation) while energetic aspects were ignored in Beghin’s
treatment. Subsequently, Fukushima and Parker (1990) mixed the ideas
developed in their former article on steady turbidity current (1986) and
the simple geometric treatment contained in the KS model.

At the end of the eighties, a new generation of powder snow avalanche
has appeared [Scheiwiller & Hutter (1987); Hermann (1993); Naaim &
Gurer (1997); Issler (1998); see also Hutter (1996)]. They rely on the nu-
merical resolution of local equations of motion, including a two-phase mix-
ture approximation and closure equations (usually a k−ε model for turbu-
lence). Though they are undoubtedly a promising approach to modelling
powder snow avalanche, their level of sophistication contrasts with the
crudeness of their basic assumptions as regards the momentum exchanges
between phases, turbulence modification due to the disperse phase, and
so on. At this level of our knowledge of physical and natural processes, it
is of great interest to still use simple models and to completely explore
what they can describe and explain. The viewpoint expressed here does
not differ from the philosophy of the Cambridge school of geophysics,
which has explored in detail the box-model approximation of turbidity
currents [Huppert 1998].

The article examines the effect of snow entrainment in Beghin’s model.
We will first begin by presenting the basic knowledge of erosion mecha-
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nisms occurring in an erodible bed, over which a rapid turbulent current
arrives. We will then present how the snow entrainment is accounted for
in Beghin’s model. The last part of the article is devoted to a case study
(comparison with avalanche data obtained in the Sionne site).

2 Snow entrainment from the snow cover

The entrainment of particles from a loose or cohesive particle bed by
a turbulent current is an old problem, which has received considerable
attention from the end of the XIXth century, notably in the context of
hydraulics (bed load transport in rivers) and in chemical engineering (re-
moval of colloidal particles from substrates). The reader is referred to
the work of Garcia and Parker (1997, 1990, 1992) for applications in the
context of turbidity currents. Most of the time, steady conditions inside
the turbulent current are assumed in order to measure or compute the
threshold of incipient motion and the entrainment rate of particles from
the bed. Since for fine particles, the turbulence structure depends a great
deal on the time equilibrium between the diffusion, advection, production,
and dissipation process and thus strongly affects particle entrainment
and stratification, the abundant literature on the entrainment-deposition
problem is not of great help in our case.

More recently, specific studies have been performed to evaluate the
influence of bed load transport on the motion of a water surge. Capart
and Young (1998) and Capart and Fraccarollo (2002) have studied the
dam break problem for a mobile bed (made up of coarse particles) ex-
perimentally and numerically. The authors have shown that an intense
entrainment of particles occurs in the snout, leading to a sudden and
quasi instantaneous scouring of the bed: particles were lifted up and filled
all the wave front, which was much steeper than that observed for a rigid
bed. As shown in Fig. 1, the front plays the key role in the particle en-
trainment.

Beghin performed a series of laboratory experiments to obtain a qual-
itative picture of entrainment [unpublished work]. For this purpose, he
used Hopfinger and Tochon-Danguy’s (1977) assumption, stating that it
is possible to use Boussinesq flows to simulate powder-snow avalanches
in the laboratory, and he further assumed that a powder snow avalanche
can be assimilated to a buoyant cloud, that is, a finite-size current. His
experiments involved releasing a given amount of heavy fluid contained
in a box onto a horizontal plane immersed in a light fluid. A thick film
of heady fluid was also deposited along the plane. Using different colored
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Fig. 1. Image mosaics for the Taipei erosional dam-break wave experiments, conducted
with light granular material (ρs = 1048 kg/m3). Digital footage from the experiments
of Capart & Young (1998). Courtesy of Dr. H. Capart.

brine solutions as heavy fluids made it possible to visualize the entrain-
ment from the ground. As shown in Fig. 2, the fluid at rest is lifted up
by the frontal eddy, whose sense of circulation is counter clockwise when
the current moves from left to right. The entrained fluid is then incor-
porated into the current by a series of vortices, which may result from a
Kelvin-Helmholtz-like instability [Britter & Simpson 1978]. The entrain-
ment pattern visualized by Beghin did not differ from the one obtained
by Hopfinger and Tochon-Danguy (1977) for steady gravity currents.

Further experiments were carried out in the Cemagref by Beghin till
1992, then by Revol, Fehrenbach, Magnard, Clément, and myself, to ex-
amine what happens when the heavy fluid is replaced by a suspension and
the horizontal plane is replaced by a tilted channel. Such experiments in
the laboratory are difficult to run. We had to find a compromise between
the “easiness” with which the sediment can be entrained into the cloud
and the capacity of the sediment (at rest) to lay over inclined planes
without sliding. This problem of selecting a good material is increased
by the constraints imposed by similarity conditions. For the sediment to
be entrained and maintain in suspension, we have to use light materials,
whose settling velocity is low compared to the characteristic velocity of
large eddies; this can be achieved by using materials (i) whose density
%s does not differ too much from the density %a of the surrounding fluid
or (ii) whose diameter is very low. In the preliminary tests made with
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Fig. 2. Entrainment of a colored brine film.

the air as the surrounding fluid, we used kaolin particles. We observed
very large velocities of the particle cloud together with a rapid collapse
of the cloud. The kaolin particles were likely to quickly aggregate due to
electrostatic effects and settled. This led us to use water as the interstitial
fluid though it made it impossible to study non-Boussinesq suspensions.
We used either sawdust (mean typical diameter d = 500 µm, %s = 1060
kg/m3) or glass beads (mean typical diameter d = 90µm, %s = 2450
kg/m3). If these materials had very low settling velocities (in the range
6–8 mm/s), they also presented the disadvantage to acquire a cohesion
when they were wet. Another experimental problem was that the angle of
repose of these materials fell in the range of plane inclinations (typically
the range 30–45◦); thus, depending on the channel slope, the mobile bed
either was very difficult to set in motion or spontaneously slide before the
cloud was released. For the particles constituting the erodible bed not to
slip along the plane, we covered the plane with a (oscillating or fixed)
grid. We observed that the particle cloud was composed of two evident
eddies (see Figs 3–4) in agreement with Simpson’s (1972) observations.
When the cloud moved from left to right, we observed a small vortex
ahead the front, whose sense of circulation was clockwise, and a large
eddy occupying most of the cloud volume and whose sense of circulation
was counter clockwise. The large eddy had a double role: it entrained
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the surrounding fluid but also the particles from the bed. Indeed, when
the cloud moved over the erodible bed, particles were set in motion and
formed a dense layer, whose velocity was smaller than the cloud velocity.
The large eddy accelerated a part of this dense layer lagging behind the
cloud. In this way, particles were entrained from behind.
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Fig. 3. Sketch of the cloud structure.

In short, the few experiments performed to gain insight into the mech-
anisms of particle entrainment from the bed shows a complicated pattern.
In the experiments made by Capart along with the former experiments
of Beghin, the particles were entrained from above into the cloud by the
frontal eddy while in our last experiments, they are entrained from the
tail.

3 Beghin’s model

3.1 Equations of motion and analytical solutions

Beghin’s (1981, 1983, 1985, 1990, 1991) model is based on mass and mo-
mentum balance equations. Here we focus our attention to purely two-
dimensional clouds over an infinite plane. Figure 5 depicts a typical cloud
entraining snow from the bed. In the following, h denotes the cloud height,
L its length, m its mass, V its volume. The plane inclination with respect
to the horizontal is θ. The center of mass of the cloud is located at the
abscissa x; its velocity is U . The front position is given by the abscissa
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Fig. 4. Series of three photographs showing the motion of the cloud and the particle
entrainment.

xf while its velocity is Uf . The volume solid concentration is φ and it is
assumed that the cloud is a homogeneous suspension of snow particles of
density %s (no density stratification) in the air (density %a). The cloud
density is then: %̄ = φ%s +(1−φ)%a. The surface area (per unit width) ex-
posed to the surrounding fluid is denoted S and can be related to h and L
in this way: S = ks

√
hL, where ks is a shape factor. Here we assume that

the cloud keeps a semi-elliptic form, whose aspect ratio k = h/L remains
constant during the cloud run. We then obtain: ks = E(1 − 4k2)/

√
k,

where E denotes the elliptic integral function. Similarly, we can also ex-
press the volume V (per unit width) as: V = κhL, where κ is another
shape factor for a half ellipse. Here we have: κ = π/4. We also need to in-
troduce an overall Richardson number, defined here by: Ri = g′h cos θ/u2,
where g′ denotes the reduced gravity g′ = g∆%̄/%a and ∆%̄ = %̄−%a is the
buoyant density [Turner 1973].

The variations in the cloud mass result from entrainment of the sur-
rounding air and entrainment/deposition of particles. During a small time
increment δt, the cloud volume V has increased by a quantity δV mainly
as a result of the air entrainment, thus the corresponding increase in the
cloud mass is %aδV . In extreme conditions, the top layers of the snowcover
are made up of new snow of weak cohesion, which can be easily entrained.
Therefore we can consider that, when the front has travelled a distance
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Fig. 5. Sketch of the physical system studied here.

Ufδt, where Uf is the front velocity, the top layer of depth hn and density
%s is entirely entrained into the cloud. The resulting mass variation (per
unit width) writes: %sUfhnδt. In the same time, particles settle with a
velocity vs. During the time step δt, all the particles contained in the
volume Lvsδt deposit. Finally, by taking the limit δt → 0, we can express
the mass balance equation in the following:

dm

dt
= %a

dV

dt
+ %sUfhn − φ%sLvs

where m = %̄V is the cloud mass. Usually the settling velocity is very low
compared to the mean forward velocity of the front so that it is possible
to neglect the third term in the right-hand side of the equation above.
Another usual assumption is to consider that the inflow rate is propor-
tional to a characteristic velocity (generally the mean velocity) and the
surface area [Turner 1986]. Such an assumption leads to V̇ = α(θ)S U ,
where α(θ), which is an entrainment coefficient depending on the incli-
nation θ only. This assumption needs further explanations. It is usually
stated that the entrainment coefficient is a function of the Richardson
number. Here the overall Richardson number reflects the stabilizing ef-
fect of the density difference and the relative importance of buoyancy
[Turner 1973]. In the case of a gravity current with constant supply, it
is observed that for a given slope, the mean velocity U reaches a con-
stant value, insensitive to slope but depending on the buoyancy flux (per
unit width) A = g′hU : U ∝ 3

√
A [Turner 1973; Britter & Linden 1980].

This also means that the flow adjusts rapidly to a constant Richardson
number (for a given slope). In this case, using approximate equations for
the mass and momentum balances (respectively d(HU)/dx = αU and
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d(HU2)/dx = g′h sin θ), we easily deduce that the entrainment coeffi-
cient α is a function of the Richardson number and slope: α = Ri tan θ
[Turner 1973]. Here, although buoyancy supply is not constant, we as-
sume that the entrainment coefficient α depends only on the slope. Us-
ing the simple rule d()/dt = Ud()/dx, we obtain that the volume must
linearly increase with the mass-center position x: dV/dx = α(θ)S, or
equivalently: dV/dx = αv

√
V with αv = αks/

√
k. This also implies that

the cloud height and length vary linearly with x. After simple algebraic
manipulations, we find:

dL

dx
= αL (1)

dh

dx
= αh (2)

where αL = αv/(2
√

kκ) and αh =
√

k/καv/2. The final expression of the
mass balance equation is:

d∆%̄V

dt
= %sUfhn (3)

The velocity of the front is given by:

Uf =
d
dt

(xf − x + x) = U +
1
2

d
dt

L = U
(
1 +

αL

2

)

The mass balance equation can also be cast in the following form, where
∆%̄ is the variable:

d∆%̄

dx
=

1
k

(
1 +

αL

2

) hn

L

%s

L
− 2αL

∆%̄

L

This equation can easily be integrated. We use the following initial
conditions: at x = x0 and t = 0, we have U = U0, h = h0, L = L0,
V0 = κh0L0, and %̄ = %̄0. Further assuming that the erodible snowcover
thickness is constant, we obtain:

V (x) =
(√

V0 +
αv

2
(x− x0)

)2

V (x)∆%̄ = %s

(
1 +

αL

2

)
hn(x− x0) + ∆%̄0V0

Under these assumptions, the volume and bulk density variations are only
controlled by air and snow entrainments at the interface and are indepen-
dent of the momentum equation. The volume rises quadratically with the
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downstream distance. The buoyant density ∆%̄ first increases with the
downstream distance provided that ∆%̄shn > αv∆%̄0

√
V0. Then, at a crit-

ical distance xc − x0 = 2
√

V0/αv − 2V0∆%̄0/(hn%s), the buoyant density
starts decreasing slowly. At long times, we obtain the following asymptotic
variation: ∆%̄ ∝ 4hn%sα

−2
v x−1. As expected, the effect of snow entrain-

ment is to offset the cloud dilution resulting from air entrainment. At
early times, snow entrainment is the prevailing mechanism leading to an
increase in the buoyant density. At long times, despite snow entrainment,
the cloud dilutes but snow entrainment still plays a role by controlling the
decrease rate. Without snow entrainment, the cloud dilutes more quickly:
∆%̄ ∝ 4V0%0α

−2
v x−2 instead of ∆%̄ ∝ x−1.

Let us now examine the velocity variation. The ambient fluid exerts
two types of pressure on the cloud: a term analogous to a static pressure
(Archimede’s theorem), equal to %aV g, and a dynamic pressure. As a
first approximation, the latter term can be evaluated by considering the
ambient fluid as an inviscid fluid in a irrotational flow. On the basis
of this approximation, it can be shown that the force exerted by the
surrounding fluid on the half cylinder is Fdyn = %aV kvd(U)/dt, where
kv = 2k is sometimes called the added mass coefficient [Batchelor 1967];
since at the same time the volume V varies, we finally take: Fdyn =
%akvd(UV )/dt. The bottom exerts a frictional force that we assume to be
of Chézy form: Cd%̄U2L where Cd is the Chézy friction factor. Thus the
momentum balance equation can be written as:

d%̄V U

dt
= %̄gV sin θ − %agV sin θ − kv%a

dV U

dt
− Cd%̄U2L (4)

or when the basal friction force can be neglected:

d(%̄ + kv%a)V U

dt
= ∆%̄gV sin θ

It is easy (but algebraically intensive) to integrate this equation. The final
expression being complicated, we only provide the asymptotic expression
at early and long times. To simplify the analytical expressions, here we
take without loss of generality: U0 = 0 and x0 = 0. At early times, the
velocity is independent of the entrainment parameters:

U ∝
√

2gx sin θ
∆%0

∆%0 + (1 + kv)%a
≈

√
2gx sin θ (5)

This implies that the avalanche accelerates vigorously in the first instants
(dU/dx →∞ at x = 0), then its velocity grows more slowly. At long times
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for an infinite plane, the velocity reaches a constant asymptotic velocity
which depends mainly on the entrainment conditions:

U∞ ∝
√

ghn sin θ
(2 + αL)∆%0

αv(1 + kv)%a
(6)

Due to the slow growth of the velocity, this asymptotic velocity is reached
only at very long times. Without snow entrainment, the velocity reaches
a maximum at approximately x2

m = (2%0/3%a)α−2
v V0/(1 + kv):

U2
m ≈ 4√

3

√
%0

%a

g
√

V0 sin θ

αv

√
1 + kv

then it decreases asymptotically as:

U ∝
√

8∆%0

3%a

gV0 sin θ

x

1
α2

v(1 + kv)
(7)

In this case, the front position varies with time as:

xf ∝ (g′0V0 sin θ)1/3t2/3 (8)

These simple calculations show the large influence of the snow entrain-
ment on the powder-snow avalanche dynamics. In absence of snow en-
trainment from snowcover, the air entrainment has a key role since it
directly affects the value of the maximum velocity that an avalanche can
reach.

3.2 Value of the parameters

Beghin performed a large number of experiments in various conditions to
obtain the values of most parameters involved in this model; the values of
a few parameters (Cd, kv) are merely assumed. Table 1 summarizes the
average values that he obtained. Similar results were obtained in subse-
quent experiments we performed with glass beads and sawdust. In Table
1, αw denotes the growth rate of the avalanche width for an unconfined
slope. In the laboratory experiments, it is easier to measure the front
position xf and therefore the growth rate of the cloud dimensions is usu-
ally computed with respect to xf . There is a simple relationship between
either growth rates:

α̃h =
dh

dxf
=

dh

dx

dx

dxf
=

αh

1 + αL
2
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Similarly, we have: α̃L = αL(1 + αL/2)−1 and α̃w = αw(1 + αL/2)−1.
It is worth mentioning that the mismatch between experimental data
obtained by different authors can be merely due to a confusion in the def-
inition of the growth rate. For instance, the difference between the height
rates obtained by Beghin et al. (1981) and Akiyama and Ura (1999)
comes close to zero if one takes care to this problem. Further experi-

2D 3D

κ (theoretical value) π/4 π/6
κ (measured value) 0.78–0.86 –
kv 2k 1.6k

ks (theoretical value) E(1− 4k2)/
√

k 3/4
ks (measured value) 2.15 + (1.2 + 0.07θ)−2 –

k 0.16 + 0.04
√

θ –
α̃h 3.6× 10−3(θ + 11) 2.5× 10−3(θ + 10)
with hn = 0
α̃h 1.7× 10−3(θ + 24) 0.08 at θ = 30◦
with hn > 0
α̃L 4.4× 10−3(θ + 59) 2.1× 10−3(θ + 150)
with hn = 0
α̃L 0.45 at θ = 42◦ 0.35 at θ = 30◦
with hn > 0
α̃w 0 0.45
with hn = 0
α̃w

0 0.4
with hn > 0

Table 1. Values of the coefficients κ, kv, ks, α̃h, α̃L, α̃w, and Cd depending on the flow
geometry (two- or three-dimensional flow) and snow entrainment. All these coefficients
are dimensionless; θ is expressed in degrees. For three-dimensional clouds entraining
particles from the bed, experiments were performed for a single slope (θ = 30◦). The
length growth rate holds only for slopes in excess of 10◦ (below this value, the cloud
is followed by a dilute tail, which makes it difficult to measure the length accurately).
Data scattering is pronounced for highest slopes (θ > 50◦). The symbol – means that
no experiment was made.

ments have also been conducted by Fukushima and Hayakawa (1995), and
Fukushima (1998). For three-dimensional clouds, these authors proposed
αL = 0.354(tan θ)0.264, αH = 2 × 10−3θ, ks = π/4, kv = 2/(8.09 3

√
θ).

For two-dimensional clouds, they obtained: κ = π/4, αH = 2.10−3θ,
ks = π

√
1 + 4k2/(23/2

√
k), k = 8.47/ 3

√
θ, kv = 2k.
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3.3 Calculation of the impact pressure

A key problem in the engineering application concerns the computation
of impact pressure against an obstacle. Following Hopfinger et al. (1978),
Beghin and Closet (1990) have suggested that the pressure distribution
within the cloud can be approximated by: Pdyn = 1

2K(z)%̄U2
f where K(z)

is a dimensionless coefficient reflecting the velocity variations inside the
cloud. Typically, K = 10 for z ≤ 0.1h, K = 19− 90z for 0.1 ≤ z ≤ 0.2h,
and K = 1 for z ≥ 0.2h. Beghin and Closet deduced that the impact
pressure must depend on the obstacle height. To evaluate this pressure,
they carried out a number of laboratory experiments by examining how
an obstacle of varying height modified the front motion. Their results are
tabulated in Table 2 as a function of the reference pressure pref = 1

2 %̄U2
f

and for different values of the ratio ho/h where ho is the obstacle height.

ho/h Impact pressure

0.15
(2.5− 40z)pref when z/h < 0.05
1
2
pref when z/h ≥ 0.05

0.225 0.36pref for 0 ≤ z ≤ h0

0.3 0.30pref for 0 ≤ z ≤ h0

0.375 0.22pref for 0 ≤ z ≤ h0

0.45 0.13pref for 0 ≤ z ≤ h0

0.6 0.07pref for 0 ≤ z ≤ h0

Table 2. Impact pressure exerted by a cloud against a wall of height ho.

3.4 Use in engineering applications

In its original formulation, Beghin’s model belongs to the family of mass-
center models (like Voellmy’s model). In engineering applications, since
one is mainly interested in determining what happens close to the front,
one has to reformulate the equations of motion in terms of the front po-
sition. In applications, we have to consider that the path slope and the
thickness of the snow layer prone to be entrained vary with the down-
stream distance. In the following, we assume that the path profile can be
described by a smooth and gently varying curve in the form y = f(x),
where y is the elevation and x is an arbitrary distance measured along
a horizontal axis. The front position is now given by its curvilinear ab-
scissa sf =

∫ x
0

√
1 + f ′2(x)dx taken from an arbitrary origin point; to first

order, we have: x ≈ sf cos θ̄, with θ̄ the mean path inclination. If the cur-
vature radius ((1+f ′2(x))3/2/f ′′(x)) is large, then all happens locally as if
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the path were an infinite plane inclined at an angle tan θ(x) = f ′(x) with
respect to the horizontal. Then, using the relationship U = (1 − 1

2 α̃)Uf

together with Eqs (1–4), we deduce the equations of motion for a two-
dimensional cloud:

dh

dsf
= α̃h(θ) (9)

dL

dsf
= α̃L(θ) (10)

d∆%̄V

dsf
= %shs(sf ) (11)

Uf
d(%̄ + kv%a)V Uf

dsf
=

∆%̄gV sin θ

1− 1
2 α̃

− CdL

(
1− 1

2
α̃

)
%U2

f (12)

Such a system of ordinary differential equations can easily be integrated
numerically.

3.5 Comments

In the theoretical development of his model, Beghin used Turner’s ap-
proximation for the inflow rate at the boundary between the cloud and
the surrounding fluid. This approximation implies that the cloud growth
rate is independent of the snow entrainment. This result contrasts with
experimental measurements and field data. In his laboratory experiments,
Beghin found for a two-dimensional cloud over a 42◦ slope: α̃h = 0.11 for
a cloud entraining particles against α̃h = 0.19 when there is no particle
entrainment. When taking a closer look at video tapes of real events,
one observes that, insofar as the front incorporates snow, the height grow
rate is close to zero. Figure 6 shows a sequence of three photographs of
a powder snow avalanche in the Raffort site (Méribel-les-Allues, France)
on 21 January 1981. The avalanche was artificially triggered after heavy
snow falls1 (210 cm within 7 days). In the first two photographs, it is seen
that the height is a few meters high (the height is approximately twice
the roof height of the chalets). When the front passes the chalets, built
over a gentle slope, there is a significant growth of the head. Another
point merits being mentioned: in the first instants, the airborne has a
sharp front while when it reaches the chalets, the front structure presents
several fingers, which a steep nose and a smoother boundary.
1 From 13 to 20 January 1981, the French Alps underwent one of the worst snowstorms

over the last thirty years, with an intense and destructive avalanche activity in the
northern French Alps.
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Using field data from the Ryggfonn site (Norway), Nishimura et al.
(1995) have also noticed a significant mismatch between field data and
Beghin’s values. They have computed the height and width growth rates
as a function of slope. It clearly appears that: (i) Beghin’s value of width
growth rate is correct only when the avalanche runs out, (ii) during the
release and flow phases, the width is fairly constant (although the slope
is open), (iii) the height growth rate is close to zero for steep slopes
(θ > 25◦), (iv) for θ ≤ 25◦, it is in the range 0.19 − 0.22 while Beghin’s
values vary in the range 0.02− 0.08.

These observations have two important implications. First, from a
theoretical viewpoint, the dependency of the growth rates on the path
slope results from the approximation of a constant overall Richardson
number; such an approximation holds for a gravity current for a constant
buoyancy supply but fails probably in the present case, where there are
substantial variations in the buoyancy supply. Second, from a practical
point of view, the fact that in Beghin’s model, the growth rates depend
on the snow entrainment is a consequence of the parameter fitting and
not a theoretical prediction; moreover the values obtained by Beghin from
laboratory experiments are much larger than field values. When applying
Beghin’s model to real cases, a strategy is to reduce the width and height
growth rates to obtain more realistic predictions of the cloud height.

Another point in Beghin’s model merits further discussions. Though
its engineering version involves the front position and velocity, Beghin’s
model belongs to the class of mass center models. This means that all
spatial processes occurring in the front, tail, and body, are averaged and
replaced by an overall effective process. A different viewpoint has been
expressed by Simpson and Huppert in the context of gravity currents
(for a good introduction, see [Hogg et al. 2000]): the motion of a grav-
ity current is mainly controlled by the front. Using the von Kármán–
Benjamin boundary condition at the leading edge – stating that the front
motion is characterized by a constant Froude number Fr = U/

√
gh, i.e.

Fr2 = g′/(g Ri) –, Huppert and Simpson (1980) developed a very simple
model called the “box model”. They considered a two-dimensional gravity
current as a series of equal cross-sectional area rectangles (of length l(t)
and height h(t)) advancing over a horizontal surface: u = Fr

√
g′h and

V (t) = h(t)l(t) = V0 where V0 denotes the initial volume (per unit width)
of fluid (here Fr =

√
2 inferred from theoretical considerations using the

Bernoulli equation). Using u = dl/dt and integrating the volume equation
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Fig. 6. Avalanche in the Raffort path (Méribel-les-Allues, Savoie) on 21 January 1981.
Courtesy of Méribel Alpina.
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leads to:

l(t) =
(

3
2
Fr

)2/3

(g′V0)1/3t2/3 (13)

Comparison of (8) and (13) reveals the same asymptotic behaviour, except
that in Beghin’s model, the position depends on the inclination θ. Many
experiments have been performed on the motion of a two-dimensional
cloud over horizontal surfaces and have demonstrated the reliability of the
box model. Though a direct comparison of the predictions provided by the
two model is not possible insofar as the box model approach only treats
horizontal flow surfaces, one can wonder whether a box model would not
be more appropriate for describing particle clouds entraining particles
from the bed.

4 Application to the site of La Sionne

There are very few powder snow avalanche events that have been doc-
umented accurately and thoroughly. This made it very difficult to test
the efficiency of Beghin’s model. In the course of February 1999, three
powder snow avalanches were triggered and monitored in the Sionne site
(Switzerland, Wallis). This series constitutes an outstanding source of
information.

The site is located above Sion (Rhone valley). The path extends in
the south-east facing slope of Crêta Besse between approximately 2550
(2400–2700 m) and 1450 m in elevation and its length exceeds 2.2 km.
The bottom point of the path is marked by the Sionne river. Flowing
avalanches can be confined in the river bed and continue to flow. On the
whole, the path is open, except between 1800 and 2000 m a.s.l, where
avalanches are confined in one or two gullies. The overall slope is high
(52%); the path slope decreases rather regularly between the release zone
(slope: 80%) and the run-out zone (mean slope close to 30%). More infor-
mation can be found in the report edited by Issler (1999) and the article
by Ammann (1999). The reader is also referred to recent papers concern-
ing the events of February 1999 [Dufour et et al. 2001, Schaer & Issler
2001, Vallet et al. 2001].

Here, we only examine the avalanche of 10th February 1999, for which
the front velocity was recorded and the variations in impact pressure with
time were measured on a tubular mast and a wedge located at the ele-
vation of 1640 m. In Fig. 7, we have reported the variation in the mean
front velocity Uf as a function of the downstream distance sf : the black
boxes correspond to the measured data while the solid line represents the
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solution obtained by integrating Eqs (9–12) numerically and the dashed
line corresponds to the variations in the asymptotic velocity [given by
Eq. (6)]. In either case, we have considered a two-dimensional cloud. For
the model parameters, we have taken the values obtained by Beghin and
tabulated in Table 1. For the initial conditions, on the basis of the pho-
togrammetric study by Vallet et al. (2001), we have considered that on
average, the released snow layer hs is 1 m thick.

Fig. 7. Variation of the front velocity with the downstream distance. Initial conditions:
V0 = 100 m2, U0 = 0 m/s, %0 = 100 kg/m3, h0 = 1 m, L0 = 100 m; hs = 1 m when
y ≥ 2200 a.s.l., hs = 0 for y ≤ 1900 a.s.l., inbetween we have assumed (somewhat
arbitrarily) a quadratic dependence of hs on the elevation y; %0 = 150 kg/m3. Param-
eters: k = 0.36, αv ≈ 0.255, αh = 0.085, αh = 0.245, κ = Pi/4. Black boxes: front
velocity measurements (Courtesy of François Dufour and EISLF). Continuous curves:
numerical solution to the equations of motion (9–12). Dashed curve: asymptotic veloc-
ity (given in part by Eq. 6 in which x has been replaced by sf and θ by arctan|f ′(x)|
where f(x) is the interpolating function of the path profile); same conditions as for the
numerical solution except that hs = 1 over the entire path.

Comparing numerical results obtained using Beghin’s model and field
data reveals a good agreement. On the contrary, assuming no snow en-
trainment leads to a very different result as shown in Fig. 8: in the early
times, the curves with and without snow entrainment coincide but rapidly
the curve corresponding to the no-entrainment solution decays while the
curve pertaining to the entrainment solutions still grows. In Fig. 7, there
is no much difference between the numerical solution and the theoretical
approximation (asymptotic velocity). This demonstrates that the velocity
reaches its asymptotic state fairly quickly and that the initial conditions
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do not significantly influence the subsequent evolution of the front veloc-
ity.

Fig. 8. Variation of the asymptotic front velocity with the downstream distance. Con-
tinuous curve: solution with snow entrainment. Dashed curve: solution without snow
entrainment. Same flow conditions as for Fig. 7.

Figure 9 shows the variation in the reference pressure. The pressure
peak is found close to 12 kPa while the reference pressure at the tubular
mast is approximately 6 kPa. Even if we multiply this reference pressure
by 10 (see Sec. 3.3), the computed value differs substantially from the
range of measured values. Issler and Schaer (2001) have found that, on
average, the pressure exerted by the avalanche of 10th February 1999 on
the mast (at 3.9 m from the ground) was close to 400 kPa. Instanta-
neous peaks exceeding 1200 kPa were also measured. The damage to the
measurement structures confirmed that very high levels of pressure were
attained in the three avalanches of February 1999.

Here we have not reported the variation in the cloud height h since it
varies almost linearly with downstream distance. Close to the measure-
ment structures, the computed value of h is approximately 180 m while,
according to Issler and Schaer (2001), the cloud height did not exceed 50
m for the avalanche of 10th February 1999. This is an important clue which
reveals that the cloud growth rates measured in the laboratory are approx-
imately 3 to 4 times higher than the rates pertaining to real avalanches.
If we assume that the true volume growth rate is αv = 0.255/3 ≈ 0.08,
we find that at y = 1640 a.s.l, the front velocity is 64 m/s (in fairly good
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agreement with field observations), the bulk density is %̄ = 52 kg/m3, and
the reference pressure is 120 kPa; therefore applying a multiplying factor
as explained in Sec. 3.3, we found a maximum pressure of 1200 kPa, which
is consistent with the field data. Furthermore, sensibility tests show that
the reference pressure is much less influenced by other model parameters
such as hs. The value of the entrainment coefficient αv is thus found to
be a key parameter in the powder snow avalanche dynamics.

Fig. 9. Variation of the reference pressure with the downstream distance. Same flow
conditions as for Fig. 7. Continuous curve: numerical solution to Eqs. (9–12) with
αv = 0.255. Dashed curve: approximate solution with αv = 0.085.

5 Concluding Remarks

This article has been the opportunity to present the different develop-
ments of Beghin’s model from 1981 to nowadays. Despite its apparent sim-
plicity, this model can be used to correctly describe various flow conditions
(particle cloud with or without entrainment, two- or three-dimensional
flow). For laboratory experiments, its success is tightly related to the
adjustment of growth rate parameters, which can be easily performed.
When applying this model to real cases, so far the only solution at our
disposal has been to use the parameters fitted on laboratory experiments.
Interestingly enough, the predictions of the front velocity obtained in this
way are in good agreement with the few field data. In contrast, the com-
puted cloud height differs by a factor 3 to 4 from the measured value
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and the maximum impact pressure is 200 times smaller than the mea-
sured pressure peak. A better agreement can be obtained as soon as the
entrainment coefficient αv (volume growth rate) is changed.

Snow entrainment has been taken into account in a simple way in
Beghin’s model: it is merely assumed that the entire layer of newly fallen
snow can be incorporated into the cloud by the front. Snow entrainment
is a key process in the avalanche dynamics, which dictates the damage
potential of the avalanche. According to Beghin’s model the maximum
velocity reached by the avalanche is slightly modified by snow entrainment
but, since snow entrainment balances the cloud dilution resulting from air
entrainment, the avalanche can maintain very high velocities over long
distances whereas, if there is no snow entrainment, the avalanche velocity
decays rapidly. Another effect of snow entrainment is indirectly described
in Beghin’s model: snow entrainment involves a lower volume growth
rate αv. This makes it possible to achieve high values of bulk density
and thus of impact pressure. A proper evaluation of the entrainment
coefficient (function of snow entrainment) is needed for Beghin’s model
to be applicable to real cases. The present study leads to estimates of
αv which are three times smaller than those previously obtained in the
laboratory.
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cific thanks to François Dufour who kindly received us in his site and
provided data.

References

1. Akiyama, J. and Ura, M., “Motion of 2D buoyant clouds downslope”, Journal of
Hydraulic Engineering, 125 (1999) 474–480.

2. Ammann, W.J.,“A new Swiss test-site for avalanche experiments in the Valleée de
la Sionne”, Cold Region and Science Technology , 30 (1999) 3–11.



Snow entrainment in powder snow avalanches 23

3. Bozhinskiy, N. and Losev, K.S., The fundamentals of Avalanche Science, translated
from Russian by C.E. Bartelt, Communication 55 (EISFL, Davos, 1998).

4. Batchelor, G.K., “An introduction to fluid dynamics” (Cambridge University Press,
1967) 614.

5. Beghin, P. and Brugnot, G., “Contribution of theoretical and experimental results to
powder-snow avalanche dynamics”, Cold Review Science and Technology, 8 (1983)
63–73.

6. Beghin, P. and Closet, J.-F., “Effet d’une digue sur l’écoulement d’une avalanche
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