
1 

Looking towards the use of a conceptual approach to 
predetermining high-return-period avalanche run-

out distances  
 

Maurice Meunier and Christophe Ancey 

Cemagref  
Research unit Torrential Erosion, Snow and Avalanche 

Domaine universitaire BP 76 
38402 Saint-Martin-d’Hères cedex, France 

 
 
 
 
ABSTRACT. Investigating snow avalanches using a purely statistical approach raises several issues. First, 
even in the heavily populated areas of the Alps, there are few data on avalanche motion or extension. Second, 
most of the field data are related to the point of furthest reach in the avalanche path (run-out distance or altitude). 
As data of this kind are tightly dependent on the avalanche path profile, it is a priori not permissible to 
extrapolate the cumulative distribution function fitted to these data without severe restrictions or further 
assumptions. Using deterministic models is also problematic as these models are not really physically-based 
models. For instance, they do not include all the phenomena occurring in the avalanche movement, and the 
rheological behavior of the snow is not known. So, it is not easy to predetermine the extreme events extensions. 
Here, in order to overcome this issue, we propose to use a conceptual approach. First, using an avalanche-
dynamics numerical model, we fit the model parameters (friction coefficients and the volume of snow involved 
in the avalanches) to the field data. Then, using these parameters as random variables, we adjust appropriate 
statistical distributions. The last steps involve simulating a large number of (fictitious) avalanches using the 
Monte Carlo approach. In this way, the cumulative distribution function of the run-out distance can be computed 
over a much broader range than initially with the historic data. In this paper, we will develop the proposed 
method through a complete case study, using two different models for comparison.  
 
 

I INTRODUCTION 

This paper examines the possibility of using a conceptual approach to predetermining the 

run-out distance of rare avalanches (i.e., whose period of return is large, basically 100 yr or 

more). Conceptual approaches are common in hydrology, notably in the problems related to 

the predetermination of discharge in a given watershed from rainfall data. To our knowledge, 

approaches of this kind have never been fully attempted in the study of avalanche extensions 

although they can provide a more robust alternative to the statistical and deterministic 

(physical) approaches so far used for determining the run-out distance (point of furthest reach) 

of rare avalanches. 
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In the statistical approach, the basic ideas were expressed in the pioneering work of Lied 

and Bakkehøi (1980). The authors assumed a regional homogeneity in the avalanche 

behaviour for a given mountain range. This allowed them to pool the data from various paths 

in a common database. In this way, using regression techniques, they obtained the relationship 

between the run-out distances and various key variables of the path profile. This methodology 

has been applied to different mountain ranges over the world (see Bakkehøi and others, 1983; 

McClung and Lied, 1987; Fujisawa and others, 1993; Adjel, 1995) and extended to introduce 

the period of return as a parameter of the problem (McClung, 2000, 2001). In Alpine 

countries, where most of the time the avalanche paths of the same mountain range exhibit no 

similarity in their shape, the fundamental assumption of avalanche homogeneity is 

questionable (Adjel, 1995). 

In the deterministic approach (for a review, see Harbitz, 1999; Ancey, 2001), the avalanche 

features are deduced from solving the equations of motion (mass and momentum equations). 

Deterministic models (sliding-block and depth-averaged models) introduce a friction law, 

reflecting the interaction between the avalanche and the path. In most models, the friction law 

includes two empirical frictional parameters, which have been fitted from field observations 

(Schaerer, 1975; Dent and Lang, 1980; Buser and Frutiger, 1980). The resulting values have 

been proposed as default values in engineering guidelines [Swiss guidelines on the so-called 

Voellmy-Salm-Gubler method (Salm and others, 1990) or the USGS handbook (Mears, 

1992)]. Though it aims primarily at providing a physical picture of avalanche motion, the 

deterministic approach involves too many ad hoc assumptions to be considered as a true 

physical approach. Indeed, a number of basic physical processes (snow entrainment or 

release, turbulent suspension and transformation into an airborne, etc.) occurring in the 

avalanche course are either unknown or neglected in the avalanche-dynamics models. 

Furthermore, very little is known on the bulk rheological behaviour of snow and therefore, 

despite a number of attempts to find physical justifications for their expressions (e.g., see 

Salm, 1993), the friction laws used so far remain speculative and empirical. In this respect, it 

is not surprising that, in a recent benchmark of avalanche-dynamics models (see Barbolini and 

others, 2000), a significant mismatch was found in the frictional parameter values fitted from 

field data: this merely means that these parameters do not represent physical properties of 

snow (like a snow viscosity) but, on the contrary, they reflect the interrelated influences of 

snow, path profile, and model assumptions on the computations. Such a result is sufficiently 
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disturbing to question the use of avalanche-dynamics models to paths where no field data are 

available. 

The diversity of approaches to studying avalanches are also encountered in hydrological 

sciences. Resulting from a wider practice and intense debates within a large and growing 

community, the ideas in hydrology about modelling are probably more precise: a clear 

distinction is made between statistical, physical, and conceptual models; see, for instance 

Betson and others (1989), Beven (1989), and the recent papers by O’Connel and Todini 

(1996), Van der Kwaak and Loague (2001), or Bates and Campbell (2001). Most of the time, 

selecting one of these approaches depends on the knowledge level of basic physical processes 

involved in the problem together with the number, quality, and type of available data. Both 

conceptual and physical approaches represent the catchment response to a rainfall as the result 

of basic processes (infiltration, storage, runoff, etc.) but in a very different way. In the 

physical models, the elementary processes are assumed to be known from scale-down 

experiments in the laboratory; the parameters introduced in the models represent physical 

properties that can be measured accurately and independently. On the contrary, in the 

conceptual models, the processes believed to be dominant in the hydrological response of a 

basin are idealized in the form of mathematical operators; the objective is to mimic the natural 

processes and not to explain them. In that case, the model parameters are purely empirical 

functions or values, which must be calibrated using the physical observable variables that are 

the object of the prediction.  

A parallel can be helpfully drawn between the avalanche run-out problem and the rainfall-

runoff transformation. In both cases, one has input and output variables, between which one 

tries to find a causal/functional relationship using a physical/conceptual model. A difference, 

which may be seen slight at first glance, exists however: for avalanches, the only available 

output information is the run-out distance, which presents the drawback to be path-dependent, 

while in flood hydrology, the selected output variable is the flow discharge, which is a truly 

physical variable, that is, independent of the river section at which it is measured. This 

difference in the output variable status has substantial implications in the model development 

since, in the latter case, it is mathematically licit to extrapolate the probability distribution to 

estimate flood discharges of long period of return whereas, in the former case, such an 

extrapolation cannot be done without further information. Another consequence is that, for 

floods, the model parameters remain constant for all the events whereas for avalanches, they 

should vary from one event to another one. 
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The objective pursued in this paper is to provide a proper way of extrapolating the 

probability distribution of run-out distances observed in a given avalanche path. Since the 

physical approach is disqualified for the reasons given above, we have developed a 

conceptual model. The basic idea is to determine the dependency between the probability 

distribution of input and output variables for a given path. Here this is done numerically using 

Monte Carlo simulations. As input variable, we will use the starting altitude and the snow 

volume involved in the avalanche. An avalanche will be idealized as a sliding block and we 

will use a Coulomb-like model (one parameter model) and a Voellmy-like model (two-

parameter model) as the mathematical operators for mimicking the main features of avalanche 

motion. Compared to others approaches relying on Monte Carlo simulations (e.g., Keylock 

and others, 1999; Barbolini and others, 2001), the present method need not to use 

questionable assumptions (such regionalization of data) to specify the probability distributions 

of variables and parameters but, on the contrary, use the observed field data to deduce 

consistent probability distributions. 

METHODOLOGY 

If we have a time series of field data including the run-out distance stopx , it is quite easy to 

deduce its empirical probability distribution. The point is that, most of the time, the time 

series covers a narrow period, typically a few decades. Therefore the largest period of return 

that can be evaluated in this way cannot exceed a few decades while avalanche zoning 

requires determining the run-out distance of long return-period avalanches, typically 

avalanches whose return period equals or exceeds 100 yr. Because the empirical probability 

distribution ( )stopP x  is not smooth and stopx  depends on the path profile, it is not licit to 

directly extrapolate ( )stopP x  to determine the quantiles associated with low probabilities. Here 

we develop a model that use available field data at best in order to properly extrapolate 

( )stopP x . 

Figure 1 depicts the general framework that we shall use to reach our objective. The basic 

idea is to assume that there is a single functional relationship G  between the run-out distance 

and other field data. This means that, for our method to apply, we need to have distinctive 

types of field data at our disposal. These other field data include the snowfalls preceding the 

avalanche, the starting point elevation, the released volume of snow, and so on. For the 

moment, we do not precise the type and number of these data but merely we refer to them 
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generically as the input variables Θ . The functional relationship G  relates the run-out 

distance stopx  of a given (fictitious or real) event to the input variables Θ . Obviously there is 

not a one-to-one universal function linking stopx  to Θ : indeed, it is expected that G  also 

depends on the topographical features of the path and on a set Π  of internal or structural 

parameters, reflecting the diversity and variability of snow consistency and avalanche motion. 

We express this complex relationship in the following form: ( | ;path)stopx G= Θ Π . Here, in 

order to take the path influence into account, we assume that the functional G  is a 

mathematical operator resulting from the integration of a momentum equation along the path 

profile ( )y f s=  (see below); in the following, we will use the short-cut notation: 

( | )stopx G= Θ Π . If the input variables Θ  and/or the internal parameters Π  are random, then 

the run-out distance is also a random variable. If we are able to adjust the internal parameters 

Π  for the computed run-out distances to match the observed run-out distance, then it is 

possible, by using Monte Carlo simulations, to create a large number of fictitious events 

coherent with the observations. If the run-out distance sample is large enough, we can fit an 

empirical probability distribution and then accurately determine the quantile related to a low 

occurrence probability (e.g., as low as 0.01 or 0.005). 

After outlining the general principles, we will explain how the method can be applied in 

practice. The method can be broken into four steps: 

– The first step is devoted to selecting the input variables among all the available field 

data and fitting Π . Usually in the avalanche database, various types of information are 

available (snowfall, volume, etc.) but not all the information can be used. For instance, 

redundant or interrelated data must be left aside. In a similar way, data whose time 

series is not complete or not consistent with other time series cannot be kept as input 

variables of the model. Then, the different values of Π  are adjusted for each 

documented events. Different strategies can be used to solve this inverse problem. In 

hydrology, a current practice is to use Bayesian inference to deduce ( )p Π  from ( )p Θ  

and ( )stopp x , where ( )p X  is the probability density function of the random variable 

X . Deterministic methods can be used equally for that purpose (e.g., see Ancey and 

others, 2003). Here we directly compute Π  for each event and then we adjust a 

probability distribution to the resulting sample of values Π . A difficulty common to 

all these methods is that we have a single type of output variable whereas the 
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dimension of Π  may be larger than unity. In the case where 1{ }nπ πΠ =  with 

2n ≥ , then only one parameter iπ  can be determined provided that others parameters 

jπ  with j i≠  are known; therefore, we have: ( )1 , |i stop jG xπ π−= Θ . In practice, using 

propagation operators involving a large number of internal parameters leads to 

substantial complications. 

– In the second step, attention is paid to obtaining the probability density functions of 

the input variables ( )p Θ  and ( )p Π  (if the latter has not been determined in the first 

step). Since the data are available, this merely means that we try to adjust usual 

probability distributions (Gumbel, Pearson, normal, etc.) from the selected field data.  

– In the third step, Monte Carlo simulations are performed. For each fictitious event, 

random realizations of Π  and Θ  are generated from their respective probability 

density function.  

– In the fourth step, the run-out distance is computed by applying the propagation 

operator to these random vectors and stocked. A very large sample of stopx  can be 

obtained in this way. We then deduce the empirical probability density function of 

stopx . This function must approximately match the empirical distribution adjusted from 

the recorded distances but, since it results from a much larger sample, it extends over a 

wider range of probabilities. This allows us to accurately compute the quantile 

associated with a low non-exceedance probability. For instance, the run-out distance 

whose period of return is 500 yr (corresponding to a non-exceedance probability of 

0.002) can be determined by generating 1000 events. 

Propagation operator 

In this paper, we will examine a propagation operator involving one or two internal 

parameters. Here an avalanche is idealized as a solid mass sliding along a curvilinear path and 

experiencing a frictional force F , possibly depending on θ  and/or u . In a first 

approximation, we assume that the structure of this frictional force is identical whatever the 

path and the avalanche; only its parameters may vary from one event to another but they 

remain constant during all the course of an avalanche. The general expression of the 

momentum equation writes 

 ( , )sindu F ug
dt m

θθ= −    (1) 
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As initial conditions: we use ( ) 0startu x = , where startx  is the starting-point abscissa. The 

momentum equation is integrated along the path profile ( )y f s= , where y  denotes the 

elevation and s  the abscissa along a horizontal axis; x  is a curvilinear abscissa taken from an 

arbitrary origin on the path profile: 
1/ 2

2

0
(1 ( ))

s
x f dσ σ

−

′= +∫ . After integrating the equation 

numerically, we look for the position of the stopping point, at which the avalanche velocity 

vanishes. We refer to this point as the run-out point or distance stopx . In Eq. (1), two 

expressions of the frictional force have been tested:  

– One-parameter expression (Coulomb-like model): the force F  assumed to be slope 

dependent cosF mgµ θ= , where { }µΠ =  is the internal parameter, θ  is the local 

slope, m  is the avalanche mass.  

– Two-parameter expression (Voellmy-like model), the force F  is split into a slope-

dependent term and a velocity-dependent term: 2cosF mg uµ θ κ= + , where u  is 

the avalanche velocity, and { , }µ κΠ =  are the two internal parameters. The former 

contribution allows one to control the avalanche extent while the latter mainly 

influences the maximum velocity that the avalanche can reach. Moreover, it has 

often been recognized that the avalanche mass or volume often influences the force: 

the larger volume V , the lower its bulk friction. Thus, the parameter κ  must be a 

function of the avalanche volume. For convenience, here we assume that this 

dependency can be written in the following form: /( )g Hκ ξ=  where ξ  is a 

friction coefficient and H V∝  is a typical length assumed to give an estimate of 

the mean flow depth of the avalanche. Using heuristic arguments presented in the 

appendix, we will use the following ad hoc relationship between H  and V : 
3 1/ 22.5 5 10H V−= + × . 

III APPLICATION 

Selected avalanche path and data 

For the study case, we have selected the Entremere avalanche path, which is situated on the 

left side of the Arve river in the Chamonix valley (France). This choice was motivated by two 

different considerations: first, the avalanche activity is considerable and regular; thus we have 

a fairly long time series of avalanche data on this path (approximately 100 years); second, the 
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upper part of the profile is sufficiently smooth and open for the avalanche dynamics to be 

rather simple and similar for each event. In the lower part of the profile, there is a sharp 

transition in the path slope since, at an elevation of approximately 1000 m, the path is very 

close to the horizontal (Fig. 2). This transition significantly affects avalanche motion since 

several avalanches stopped in the transition zone. In order to test the influence of the profile 

on the distribution of extreme run-out distances, we will also consider a modified path profile, 

for which the slope discontinuity was smoothed. The two profiles are depicted on Fig. 2.  

The avalanche database includes 59 events since 1905. Not all of these events have been 

recorded; notably, the avalanches stopping in the upper part of the site were not taken into 

account. For the period 1905–1970, the observed data were the starting and stopping 

elevations and the deposit volume; in Table 1, 30 events are concerned but, for three of them, 

no information on the deposit volume is available. In Fig. 2, we have reported the different 

starting and stopping points of the 27 avalanche events for the period 1905–1970. Since 1971, 

the deposit volume has no longer been estimated. For the recent period (1970–2002), 29 

events have been recorded and will not be used here.  

Uncertainty on the run-out elevation varies with time. At the beginning of the 20th century, 

it probably exceeded 100±  m while nowadays it is expected to be much lower ( 25±  m). If we 

use distance rather than elevation to describe avalanche run-out, then uncertainty on the 

stopping point position is amplified for the path parts where the slope is low, typically here in 

the nearly horizontal part of the profile. We will not study the consequences of this 

uncertainty on our results, but we will study the confidence limits which are generated by the 

method itself. 

Procedure with the Coulomb-like model and results 

For the first step, we have chosen the input and output variables: the starting and run-out 

distances startx  and stopx . By fitting the model, we have obtained the sample of friction 

parameters (see Table 1).  

For the second step, we have first fitted the sample of startx values. Since startx  is bounded, 

it is very convenient to use the beta distribution as the probability distribution. Figure 3 shows 

that the frequencies of the middle classes in the experimental values are higher than the fitted 

distribution. The experimental histogram is very irregular; for instance, for some classes, 

empirical frequency is zero. We have fitted a Gumbel distribution to the µ sample,  as 
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shown in Fig. 4. The Gumbel distribution has been used in a first approximation; other 

possibilities will be explored later on.  

In the third step, we have created large samples of startx and µ values using a random 

number generation routine. As the experimental sample contains 27 events for 60 years, the 

simulated sample for 1000 years should contains 450 events. Figure 3 (respectively 4) shows 

the simulated values for startx (resp. for µ ). It is seen that these samples are very close to the 

theoretical distributions.  

In the last step, we have used these two samples to generate 450 fictitious avalanches. The 

run-out distance of each event has been stored. As shown in Fig. 5, there is no much 

difference between the empirical probability distribution of the simulated run-out distances 

computed using the Coulomb-like model or the Voellmy-like model (see below). The 

simulated run-out distances match well the field data, except for the last four identical points 

(run-out distance at 2100 m). At this critical point, the path profile is nearly horizontal (river 

bed) and, as stated previously, uncertainty on the stopping point position is high. Thus, on the 

whole, we can reasonably think that the model correctly describes the past avalanche activity 

in the Entremere path.  

The 500-yr run-out distance obtained is 2269 m. This result is unique since the model has 

only one parameter and we use a single distribution for startx and µ . We will see later on what 

happens with different distributions.  

Procedure with the Voellmy-like model and results 

In the first step, we have computed the input and output variables together with the friction 

coefficients. The Voellmy-like model involves two input variables, the initial condition 

startx value and the avalanche depth H . The model has two internal parameters ( µ , ξ ). Since 

we have only one output variable, the value of one of them must be kept constant for the 

inverse problem to be solved. In the following, we will use the following notation ( | )ξ µ  

when it is considered that the parameter ξ  is free while the other parameter µ  is held 

constant for all the events occurring in the path. Figure 6 represents the values of the friction 

parameter ξ  that have been deduced from the field data when the value of the other friction 

parameter µ  is held constant for all the events. A very similar figure (not reported here) has 

been obtained when computing the µ values for a varying ξ  parameter. In either case, the 
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figure exhibits outliers issued from the same events that we will ignore later on. It is also 

worth noticing that:  

– the curve ( )µ ξ  is horizontal for low and large values of ξ . This gives a first 

argument for reducing the range of ξ  values: µ  being fairly constant for the lowest 

and largest ξ  values, we can consider that ξ  ranges from 500 to 10,000 without 

loss of generality. Others arguments below can be used to narrow this range further.  

– the data scattering defines two event families (denoted first and second group on 

Fig. 6): for a given ξ , there is no continuum in the µ  values but, on the contrary, 

we can observe two narrow ranges of possible values. This clear separation in the 

fitted µ  values has been also observed on other paths when the Voellmy model is 

used in a deterministic way (Ancey and others, 2003) and no convincing 

explanation has been found. 

In the second step, we have first verified that the input variables are independent and 

necessary. Most authors who used a sliding block model (or, in fact, any avalanche-dynamics 

model) did not consider the starting point position as a reliable dynamics parameter since the 

initial conditions would affect neither the steady-state solution nor the run-out distance. We 

have examined this point more precisely: for all the experimental events, we computed the 

run-out distances with several fixed values of ξ , the value of µ (fitted to the observed 

events), and a fixed startx value. The mean difference between the recorded and simulated run-

out distances has been found to vary as a function of the ξ value. For values of ξ  as high as 

1000 m/s², the mean difference is close to zero and, in this case, the starting point position 

need not to be considered as an input parameter. However, for 1000ξ >  m/s², this no longer 

holds. The mean difference increases substantially with ξ  and can exceed 40 m for ξ >5000 

m/s². In short, surprisingly enough and contrary to a common belief, it is necessary to include 

the input variable startx  in the computations since the run-out distance may depend on startx  for 

sufficiently large values of ξ . A beta distribution has been used to fit the startx values. For the 

avalanche depth H , a Gumbel distribution fits the data well as shown in Fig. 7. Usually, 

hydrologists consider that the Gumbel distribution fits annual maximum series (AMS) 

samples better than peak over threshold (POT) samples. However, here, for the high values of 

our POT sample, the Gumbel distribution fits sufficiently (to the naked eye) for us to keep it. 
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Determining the statistical distributions on the ( | )ξ µ  and ( | )µ ξ  samples turns out to be 

intricate since it is not licit to use a one-peak distribution fitted to the data. The simplest 

approximation involves taking the sum of the two probability distributions fitted on each 

group. In this way, we shall obtain the one-variable conditional distribution of each 

parameter. In a previous investigation, we found that a probability distribution made up of 

two beta distributions fits the ( | )µ ξ  values well (Meunier and others, 2001). However, since 

in the following, we are also interested in determining the ( | )ξ µ  distribution, we find it 

simpler to fit a statistical model resulting from superposing two normal distributions on the 

( | )µ ξ  and (ln | )ξ µ  values; here we use (ln | )ξ µ  rather than ( | )ξ µ  because the range of 

possible ξ  values covers several orders of magnitudes. As shown in Fig. 6 for ξ , we have 

explored the entire range of possible values for the two parameters even though they may 

have no physical meaning for the practitioner. Figure 8 shows the cumulative distribution 

functions fitted to the (ln | )ξ µ  values. These figures call for several remarks: 

– The existence of two event groups is fully conditioned by the µ  value: for 

0.4µ < , the second group does not exist because, in this case, the computed run-

out distances ( | )stopx ξ µ  never match the field data.  

– For extreme µ  values (i.e., when 0.225µ ≤  or 0.5µ ≥ ), agreement between 

empirical and computed frequencies is poor: the empirical distribution is step-

shaped while the fitted distribution tends to smooth abrupt variations in the ξ  

value.  

– For these extreme µ  values, the fitted double normal distributions are no longer 

parallel to the others, which implies that the curves intersect. This point is 

disturbing: if we keep them, inconsistent values will be generated when we apply 

the Monte Carlo method. Obviously this undesirable behaviour originates from the 

fact that the curve ( )µ ξ  flattens out when 10ξ  m/s²: in that case, low 

variations in the µ value induce large variations in the ξ  value.  

This motivates us to reduce the µ  range by removing values that provide non-parallel 

curves in Fig. 8. Since we use double normal distributions, this also means that we discard 

the µ  values whenever both the mean ξ  and the standard deviation ξσ  of the (ln | )ξ µ  
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sample differ significantly from a set of selected values. Translated into a mathematical 

expression, this condition can be expressed as follows. If the condition: 

( ) d dF k
d d

ξξ σµ
µ µ

= + ≤  

is not fulfilled, in which 20k =  for the first avalanche group and 55k =  for the second 

avalanche group, then the µ  value must be left aside. Using this criterion, we found that µ  

must range from 0.23 to 0.46 for the first group while µ  must fall within the range 0.43–0.55 

for avalanches belonging to the second group (see Fig. 9). The same exercise was done by 

inverting the role of µ  and ξ . The same analysis as previously gives the same conclusions 

and conduct to a similar criterion: 

( ) 6
ln ln

d dG k
d d

µµ σξ
ξ ξ

′= − ≥   

where 0.04k′ =  for the first group and 0.025k′ =  for the second. Note that here, because the 

derivatives of the mean and the standard deviation do not have the same order of magnitude, 

we multiply the derivative of the standard deviation by 6 in order to give the same weight to 

the two derivatives. Eventually, we find that the ξ range is 900–5000 m/s² for the first group 

of avalanches and 165–2800 m/s² for the second group. The resulting ranges of the friction 

parameters have been tabulated in Table 2.  

The third step is much easier: for each input variable, it has consisted in randomly 

generating a sample of 450 values from its adjusted empirical probability distribution (see 

Fig. 2 for startx  and see Fig. 6 for H ). In a similar way, 450 values of the internal parameters 

have been created from the different conditional distribution of (ln | )ξ µ  or |µ ξ .  

In the fourth step, the run-out distances have been computed and stored. Figure 10 reports 

the statistical distributions of the run-out distances obtained when using the ( | )µ ξ  samples. 

Let us examine what happens when we consider extreme events that could occur in the future 

or that could have occurred in the distant past. A key point is that the bundle of curves 

diverges for run-out distances in excess of the critical point (2100 m). Data scattering is 

pronounced (200 m for the 500-yr return period run-out distance) when the entire range of ξ  
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is considered. In contrast, when we focus our attention on the limited range of ξ  determined 

previously, we found that the range of 500-yr run-out distance is narrow: approximately 50 m. 

We have proceeded similarly with the ( | )ξ µ  sample. The results are reported in Fig. 11. The 

range for 500-year run-out distance is similar for the entire or limited ranges of µ  (120 m 

against 90 m). However, the mean values for the practical range are somewhat different: 

larger for the ( | )µ ξ  simulations (2228 m) than for the ( | )ξ µ simulations (2206 m). Yet, the 

difference is only 22 m (see Table 3).  

To summarize, we conclude that: 

(i) we may either use the ( | )µ ξ  or the ( | )ξ µ  sample. 

(ii) the range of values for the fixed parameter is not completely free and the choice of 

the variation range is important: it leads to an uncertainty of 50 m for the ( | )µ ξ  

sample against 90 m for the ( | )ξ µ  sample.  

If we now compare these results with the 500-yr run-out distance obtained with the 

Coulomb-like model (2269 m), we see that the difference is approximately 50 m, the 

Coulomb-like model providing a larger distance.  

COMPLEMENTARY ANALYSIS 

Study of the modified profile with the Voellmy-like model 

 
The previous developments have used the real profile whose final part is horizontal. In the 

Chamonix valley path profiles of this kind are frequent while in many other valleys in the 

French Alps, the slope variation is gentler. In order to test the conceptual approach in this 

case, we have defined a modified profile (see Fig. 2) and we have proceeded to the same 

calculations as before. The three first steps are the same as before; and the fourth step differs 

only by the path profile used in the propagation operator.  

We only present the results for the ( | )µ ξ  possibility (see Fig. 12); the 500-yr run-out 

distances obtained using the alternative possibility are reported in Table 3. Comparing Figs 10 

and 12 is interesting: the bundles of curves are very similar below the key point of the 

horizontal terminal part of the profile and differ frankly above this point (2100 m). The range 
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of results for the 500-yr return period run-out distances is very large for the entire range of 

ξ values (310 m) but very narrow for the limited range (40 m). It means that it is very 

important to use the ranges of practical values for the internal parameters and not the entire 

ranges.  

Table 3 shows that, once again, the runt-out distance obtained using the ( | )µ ξ  values are 

larger than those obtained when the ( | )ξ µ  values have been used. The difference (73 m) is 

larger than for the flat profile (22 m). The Coulomb-like model gives a 500-yr return period 

run-out distance of 2382 m situated between the two evaluations with the Voellmy-like model 

(2347 and 2420 m). We can consider than in the conceptual approach, the use of each model 

is quite equivalent. 

Study of the friction parameter distribution with the Coulomb-like model  

In the conceptual approach, the variability of all the input variables and the friction 

parameter is reflected in the Monte Carlo simulations by their statistical distributions. 

Therefore, the choice of these distributions is of great importance, especially for the variables 

or the parameters that may reach large values (e.g., H or ξ  in the Voellmy-like model) or 

come close to zero (e.g., µ  in the two models). We shall not study this problem completely, 

but we will provide some indications in comparing the 500-yr return period obtained with the 

Coulomb-like model when we use the Gumbel and the normal distributions for the friction 

parameter µ . Figure 13 provides the non-exceeding probability of stopx  obtained using a 

normal distribution for µ  (instead of a Gumbel distribution). If the two distributions provide 

similar results for the centre of the sample, they differ significantly for the extreme values, 

especially for the lower values of µ . The behaviour entails substantial modifications (see 

Table 3): the results are much larger with the normal distribution than with the Gumbel 

distribution (115 m for the real profile and 211 m for the modified profile). Theses differences 

are larger than the differences observed when comparing the Coulomb-like and Voellmy-like 

models.  

The role of the friction parameter distribution turns out to be strategic in the conceptual 

approach. This problem needs further investigations on other profiles, for which a large 

number of documented data are available.  
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What should be the size of the simulated samples? 

In the preceding calculations we have always kept the same samples of 450 random 

numbers which gave either the µ  sample for the Coulomb-like model or the ( | )µ ξ  [or the 

( | )ξ µ ] samples for the Voellmy-like model. The results obtained so far depend only on the 

model and the profile. In Figs. 10–12, it can be seen that the curves vary quite irregularly, 

implying that the confidence limits are large. In order to estimate the computation accuracy 

(i.e. taking into account the random uncertainty), we are now looking for the size of the 

simulation samples needed to yield a confident estimation of the 500-yr run-out distance. To 

that end, we will exemplify the method proposed for assessing the confidence interval by 

considering a particular case: in the computation, we will use the Voellmy-like model, the 

modified path profile (since it was shown that it amplifies data scattering) and the conditional 

probability of 2( | 1024 m/s )µ ξ = . As stated earlier, when 1024ξ =  m/s², the influence of the 

starting position is sufficiently weak for us to ignore it in the simulations.  

We proceeded as follows: we performed 10 Monte Carlo simulations. For each of them, 

450 events were simulated (as previously but each time with different random numbers 

samples). Taken as a whole, these computations can be seen as either the simulation of the 

avalanche activity over a 10,000-yr interval or the reproducibility test of the avalanche 

activity over a 1000-yr interval. As example, the 500-yr return period of the height 

H computed with the 1000 years simulation is 7.5 m ± 1 m. The run-out distance distributions 

are reported in Fig. 14. Data scattering is substantial for individual samples and long periods 

of return. Similarly, the distribution related to the 10,000-yr interval is much smoother than 

individual distributions and provides an average trend around which the individual 

distributions vary. In this respect, the 10,000-yr distribution can be used to determine a 

quantile accurately while the individual distributions provide an idea of the possible variations 

around this value, that is, an estimate of the confidence limits. For instance, if we consider the 

500-year quantile of the run-out distance, we infer from Fig. 14 that the mean value is 2406 m 

and the confidence interval is approximately 2280–2650 m. The outcome is not very different 

if we take a longer interval of time (20,000 yr): we obtain 2394 m instead of 2406; the 

absolute difference between the two predictions is only 12 m.  

A practical rule emerges from this example: it is highly recommendable to compute the 

desired quantile from a very large sample of simulations. Typically, if one is interested in 
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determining the 500-yr return period avalanche, one should generate a sample corresponding 

to a continuous period of 10,000 years (or more).  

Summary 

Table 3 sums up all the results for the 500 years return period run-out distances. It leads to the 

following conclusions: 

– the results obtained with the Coulomb-like model are larger with the normal 

distribution than with the Gumbel distribution. The difference ranges from 100 m 

with the real profile to 200 m with the modified profile. 

– The results given by the Voellmy-like model are different according to the ( | )µ ξ  

or the ( | )ξ µ  sample. The difference ranges from 20 to 70 m, less than the 

difference introduced by the choice of the friction parameter distribution.  

– The results obtained with the two models are very similar except when using the 

normal distribution for the µ values with the Coulomb-like model. 

 

CONCLUSION 

In this paper we have developed a method to compute the run-out distances of long-return-

period avalanches. Since this variable depends on both the path profile and the avalanche 

dynamics, it is not licit to compute high-return-period run-out distances merely by 

extrapolating an empirical distribution fitted on the observed values.  

Here we have suggested using a conceptual avalanche-dynamics model and a four-step 

methodology. The first step involves choosing the input variables according to the available 

data and to calculate the parameters of the avalanche-dynamics model from the recorded 

historical events. The second step involves adjusting the statistical distributions of the input 

variables and of the model parameters. In the third step, Monte Carlo simulations are 

performed by making use of the previously determined statistical distributions. In this way, in 

the fourth step, we can generate a series of fictitious avalanches over a period of any duration. 

By taking a very long interval of time (typically 10,000 years), it is possible to obtain an 

accurate estimate of the run-out distance of a very rare avalanche (500-yr return period). This 

four-step methodology has been exemplified here using an avalanche path in the French Alps 

and two sliding-block models, the Coulomb-like and the Voellmy-like model. 
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We have shown that this methodology can be easily used with the Coulomb-like model, 

which needs only one frictional parameter. It is more complicated with the Voellmy-like 

model based on two frictional parameters. We have also demonstrated that the conceptual 

approach can be used with benefit in the avalanche field to compute a high return period 

event. An important result is that the statistical distribution of the friction parameter plays a 

central role in the final results. Its choice is crucial and further investigations are needed on 

this point. Furthermore, no significant difference is found in the extrapolated quantile stopx  

when the Coulomb-like and Voellmy-like models are compared. 

 

APPENDIX 

The mean flow depth H can be estimated from the recorded avalanche volumes by using 

assumptions similar to the empirical arguments used for debris flows and which were roughly 

validated by Russian experiments (Meunier, 1991 p. 208):  

(i) For natural flows, it exists a relationship between height and width, for which we 

may use a power law function. For water discharge, the exponent is zero for 

rectangular section, equal to 1 for triangular section, and less than 1 for convex 

sections. Here we suppose that the width of the avalanche flowW is a power 

function of the avalanche height: 0.7W H∝ . This argument is more doubtful for 

open slope avalanche, depending on the rheological behaviour of avalanche snow. 

(ii) Similarly the length L of the avalanche flow is a power function of the avalanche 

height, but with a lower exponent: 0.3L H∝ . In doing so, we obtain a crude 

relationship between the avalanche volume and its height: 2V H∝ . This expression 

holds on average but not necessarily for any event.  

(iii) We assume that the avalanche flow depth ranges from 2.5 m to 8 m.  

(iv) The avalanche volume is assumed to be constant during the avalanche run and 

deposition (snow entrainment and compaction are ignored). 
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FIGURE CAPTIONS 

 

Figure 1: Slope profile of the Entremere avalanche path. 

Figure 2: Statistical distribution of the avalanche starting distances 

Figure 3: Probability distribution of the µ  values (Coulomb-like model) 

Figure 4: Run-out distance statistical distributions obtained with the Coulomb-like model 

Figure 5: Computed values of ξ  values with fixed µ  

Figure 6: Statistical distribution of the avalanche heights. 

Figure 7: One variable conditional probability distribution of ( | )ξ µ  with fixed µ  (Voellmy-like model). 

Figure 8: Determination of the reduced range of µ for the Voellmy-like model (the arrows indicate the limit of 

validity of the criterion). 

Figure 9: Run-out distance statistical distributions with the µ  samples, different fixed values of ξ  (in m/s²), and 

the real profile (Voellmy-like model) 

Figure 10. Run-out distance statistical distributions with the ξ  (in m/s²) samples, different fixed values of µ , 

and the real profile (Voellmy-like model) 

Figure 11: Run-out distance statistical distributions with the µ  samples, different fixed values of ξ (in m/s²), 

and the modified profile (Voellmy-like model). 

Figure 12: Comparison of two distributions fitted on the µ values with the Coulomb-like model 

Figure 13: Determination of the confidence limits of the run-out distances (Voellmy-like model) 

TABLE CAPTIONS 

 
Table 1: Avalanche data on the Entremere path and µ values for the Coulomb-like model 

Table 2: Range of practical interest for the friction parameters (Voellmy-like model). 

Table 3: Comparison of the 500-year run-out distances obtained with the two models and for the two profiles 
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Figure 1: conceptual diagram of the approach. 
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Figure 2: Slope profile of the Entremere avalanche path 
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Figure 3: Statistical distribution of the avalanche starting distances 
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Figure 4: Probability distribution of the µ values (Coulomb-like model) 

1500

1750

2000

2250

2500

2750

0 1 2 3 4 5 6 7 8
Gumbel variable

R
un

-o
ut

 d
is

ta
nc

es
 (m

)

Experimental sample

 µ generated from a Gumbel distribution

Ranges of the 500 years run out distances with the 2 parameter model 

ENTREMERE Real profile

 
Figure 5: Run-out distance statistical distributions obtained with the Coulomb-like model 
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Figure 6: Computed ξ values with fixed µ 
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Figure 7: Statistical distribution of the avalanche heights 
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Figure 8: One variable conditional probability distribution of ( | )ξ µ  with fixed µ (Voellmy-like model) 
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Figure 9: Determination of the reduced range of µ  for the Voellmy-like model (the arrows indicate the 
limit of validity of the criterion) 
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Figure 10: Run-out distance statistical distributions with the µ  samples, different fixed values of ξ  (in 
m/s²), and the real profile (Voellmy-like model). 
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Figure 11: Run-out distance statistical distributions with the ξ  (in m/s²) samples, different fixed values of 
µ , and the real profile (Voellmy-like model) 
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Figure 12: Run-out distance statistical distributions with the µ  samples, different fixed values of ξ  (in 

m/s²), and the modified profile (Voellmy-like model) 
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Figure 13: Comparison of two distributions fitted on the µ values with the Coulomb-like model 
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Figure 14: Determination of the confidence limits of the run-out distances (Voellmy-like model) 
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Coulomb-like model
date Zstart (m) Zstop (m) volume (m3) µ values

19/03/2005 2200 1050 3000 0.6167
14/01/2009 2100 1050 11520 0.6071
20/01/2010 1850 1010 478800 0.5319
18/11/2010 1800 1100 67200 0.6167
08/01/2012 1800 1030 32400 0.5468
23/01/2013 1850 1060 24000 0.5918
26-27/03/14 2100 1020 72960 0.5751
19/02/2016 1950 1020 252000 0.5567
28/03/2019 1900 1040 82500 0.5727
24-25/12/19 1850 1020 288000 0.5427
09/01/2022 1900 1040 136800 0.5727
02/03/2023 1850 1040 140000 0.5661
23/12/2023 1900 1030 150000 0.5610
27/12/2025 1850 1030 86400 0.5542
14/02/2028 1750 1100 192500 0.6111
31/01/2029 1950 1100 15750 0.6316

/04/35 1600 1100 18000 0.5909
12/01/1938 1850 1100 37500 0.6220
30/01/1938 1750 1100
09/03/1939 1700 1050 7500 0.5568
02/01/1943 1700 1050
08/12/1944 1700 1030 144000 0.5301

11-12/01/1947 1800 1100 105000 0.6167
09-10/02/50 1800 1030 96000 0.5468
20/01/1951 1850 1000 90000 0.5218
28/02/1952 1850 1000 2700 0.5218
24/02/1957 1500 1150 48000 0.5925
14/03/1958 1500 1000 48000 0.4503
29/03/1962 1500 1100
03/02/1970 1700 1000 108000 0.4957  

 
Table 1: Avalanche data on the Entremere path and µ values for the Coulomb-like model 

 
 Practical range for µ  in order to 

have ξ as a random variable 

Practical field for ξ  in order to have 

µ  as a random variable 

1st group of avalanches 0.23–0.46 900–5000 m/s² 

2nd group of avalanches 0.43–0.55 165–2800 m/s² 

 
Table 2: Range of practical interest for the friction parameters (Voellmy-like model) 

 

Differences Differences
1) Normal law 2) Gumbel law between 1 and 2 a)  µ=0.23-0.46 b) ξ=900-5000 (m/s²) between a) and  b)

Real profile 2384 2269 115 2206 2228 -22
Modified profile 2595 2382 213 2347 2420 -73

Differences Differences
1) Normal law 2) Gumbel law between 1 and 2 a)   µ=0.35 b)  ξ=1024  (m/s²) between a) and  b)

Real profile 2360 2269 91 2205 2173 32
Modified profile 2547 2380 167 2320 2394 -74

 20000 years simulation
Values of 500 years Xstop Mean values of 500 years Xstop 

Mean values of 500 years Xstop 

Two parameters modelOne parameter model

Values of 500 years Xstop 
 1000 years  simulation

 
Tableau 3: Comparison of the 500-year run-out distances obtained with the two models and for the two 

profiles 

 


