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In this paper we investigate the entrainment, deposition, and motion of coarse spherical
particles within a turbulent shallow water stream down a steep slope. This problem is
an idealization of bed-load transport in gravel-bed rivers. Earlier investigations have de-
scribed this kind of sediment transport using empirical correlations or concepts borrowed
from continuum mechanics. The intermittent character of particle transport at low water
discharges led us to consider it as a random process. As suggested more than fifty years
ago, sediment transport in this regime results from the imbalance between entrainment
and deposition of particles rather than momentum balance between water and parti-
cles. We develop a birth-death immigration-emigration Markov process to describe the
particle exchanges between the bed and the water stream. A key feature of the model
is the existence of rather long autocorrelation times and wide, frequent fluctuations in
the solid discharge, a troublesome phenomenon never previously explained despite its
ubiquity in both nature and laboratory experiments. We then present experimental data
obtained using a nearly two-dimensional channel and glass beads as a substitute for
sediment. Entrainment, trajectories, and deposition were monitored using a high-speed
digital camera, which filmed the channel from the side. The theoretical model was tested
against these data. The probability distributions of the solid discharge and deposition
frequency were properly described by the model. Experiments confirmed the existence
of wide and frequent fluctuations of the solid discharge. They also revealed the existence
of long autocorrelation time, but theory overestimates the autocorrelation times by a
factor of around three. A striking feature is that particle velocity was weakly dependent
on the fluid velocity contrary to the predictions of the theoretical model, which performs
well when a single particle is moving. The consequence is that for our experiments, the
dependence of the solid discharge on the fluid velocity is entirely controlled by the num-
ber of moving particles rather than by their velocity. We also noted significant changes
in the behaviour of particle transport when the bed slope or the water discharge was
increased. The more vigorous the stream was, the more continuous the solid discharge
became. Moreover, while 90% of the energy supplied by gravity to the stream is dissi-
pated by turbulence for slopes lower than 10%, particles dissipate more and more energy
when the bed slope is increased, but surprisingly enough, the dissipation rate is nearly
independent of fluid velocity.
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1. Introduction

A longstanding problem in the study of bed load transport in gravel-bed rivers is re-
lated to the physical mechanisms governing bed resistance and particle motion. Although
experimental investigations have been conducted over the last three decades, there re-
mains a wide gap between field measurements and the predictions of theoretical models,
despite their capacity to describe bed load transport for laboratory experiments cor-
rectly. For instance, the sediment flow rates measured in gravel-bed rivers differ within
one to two orders of magnitude from the solid discharges predicted by bed-load trans-
port equations (Gomez & Church 1989; Wilcock 2001; Martin 2003; Barry et al. 2004),
although these equations have been established from flume experiments using regression
techniques and are believed to provide a proper evaluation of sediment transport in a
well-controlled laboratory environment.

At first sight, this appears paradoxical, because experiments usually show simple be-
haviour, e.g., a linear or pseudo-linear dependence of the solid discharge on the water
discharge (Bagnold 1986). Over the last century this has led to attempts to develop an
analytical model for computing the transport rate of sediment in rivers. Of the numer-
ous mechanistic descriptions of bed load transport, two main approaches have emerged:
Bagnold’s and Einstein’s formulations (Graf 1984; Raudkivi 1990; Seminara et al. 2002).

In Bagnold’s mind, the solid discharge equation can be derived by considering the
balance between the energy supplied by gravity and that expended by turbulence and
sediment transport (Bagnold 1966, 1973). In Bagnold’s model and subsequent variants
(Bridge & Dominic 1984; Wiberg & Smith 1989; van Rijn 1985; Niño & Garc̀ıa 1998), bed
load transport is essentially a two-phase flow, the dynamics of which is controlled by the
momentum transfers between the water and solid phases. When compared with labora-
tory experimental data or field measurements, Bagnold’s scaling correctly describes the
sediment transport for steady uniform or gently varying flows at sufficiently high solid
discharges (Julien 1994). However, there are several indications that Bagnold’s formula-
tion may be flawed or crude. First, for this scaling to match experimental observations,
the bulk particle friction coefficient introduced by Bagnold must be fitted to nonphysical
values (Fernandez Luque & van Beek 1976; Niño et al. 1994). Second, for flow conditions
that depart from steady uniform flow conditions, Bagnold’s model yields poor results,
notably for flows over arbitrarily sloping beds (Seminara et al. 2002) or at low levels of
solid discharge (Fernandez Luque & van Beek 1976; Nelson et al. 1995). Third, if bed-
forms (dune or antidune depending on the value of the Froude number) are interpreted
as resulting from a loss of linear stability in the coupled fluid-solid system, Bagnold’s
model fails to capture the necessary physics, since the corresponding equations of motion
show no instability (Balmforth & Provenzale 2001).

In Einstein’s view, sediment transport does not result from an equilibrium in the
momentum transfers between solid and liquid phases, but rather from the difference
between the entrainment and deposition rates, E and D, respectively, which are a function
of the flow conditions and bed geometry (Einstein 1950; Ettema & Mutel 2004). This
amounts to writing that on a small interval ∆x, the solid discharge variation is δqs =
(E − D)∆x, and so the solid discharge at bed equilibrium is the implicit solution to
the equation E = D. Einstein’s stochastic approach poses several problems that have as
yet few possible solutions. For instance, as particles move sporadically and in different
groups, the solid flow rate comprises a series of pulses and is highly fluctuating, making
it difficult to define and measure it properly, even under steady flow conditions (Bunte
& Abt 2005). Another problem is the proper definition of the characteristic time of
entrainment and deposition rates, controversy about which has led to several attempts
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to refine Einstein’s original formulation (Laursen 1958, 1999; Paintal 1971; Lopez &
Garc̀ıa 2001; Kleinhans & van Rijn 2002; Cheng 2004; Cheng et al. 2004; Charru et al.
2004). Other aspects, such as the abnormal diffusion of bed particles or wide fluctuations
in the solid discharge, seriously conflict with the predictions of Einstein-like theories
and question their statistical basis (Nikora et al. 2001, 2002; Ancey et al. 2006)—both
field and laboratory experiments have revealed that cases in which the instantaneous
solid discharge is three to four times higher than its mean value are frequent (Kuhnle
& Southard 1988; Lisle 1989; Böhm et al. 2004), suggesting that the probability density
functions of the transport-rate records have a thick tail and thus depart from the expected
Gaussian behaviour. This can be seen as the hallmark of collective motions (Sornette
2000); if so, it also undermines any mean-field approximation under which cooperation
between particles is unaccounted for.

Both approaches provide solid discharge equations that are in fairly good agreement
with flume experiments in the laboratory and, to some degree, with field measurements
in rivers, but both rely on empirical parameters and thus require the use of fitting proce-
dures. Indeed, a full analytical approach is almost intractable owing to the many processes
involved: complex interplay between the particles and the carrying fluid; particle ex-
changes between the bed and the flow; turbulence effects (bed friction, advection of
turbulent structures); and so forth. In this and in many other problems in the environ-
mental sciences, it is difficult to judge the reliability of a model of which some, if not
all, parameters have to be tuned (Iverson 2003). The measure of success of a theory is
seriously biased by the systematic and unavoidable recourse to parameter fitting. Rather
than seeking immediate applicability, progress requires an enhanced understanding of
physical processes and the testing of models by assessing the extent of the range over
which the discrepancies with measurements are minor. Moreover, if one focuses on solv-
ing all the specific problems of turbulent flow in particle systems, one may lose sight of
the original objective, of finding a simple but general analytical framework for dealing
with sediment-transport issues in practical situations.

The present paper is a step towards such a framework, made by thoroughly examining
various physical processes involved in sediment transport, while keeping a reasonable
level of complexity in our description. A key factor was to be able to access the details
of the flows and measure as much parameters as possible. Also, to avoid complications
associated with many laboratory experiments when working with natural sediment, we
devised a simple system in which the boundary and initial conditions can be entirely
controlled and imposed. We built a narrow channel, in which sediment was replaced by
coarse spherical glass beads. As our aim was not to provide a comprehensive picture of
sediment transport, we focused on steep slopes and coarse particles, for which transport
of particles is referred to as bedload transport—particles are not in suspension, but roll
or jump along the bed. The resulting flow conditions are typical of those encountered in
gravel-bed rivers in piedmont and mountain regions.

Section 2 outlines our theoretical framework. We wish to compute the solid discharge,
which can be defined as the product of the number of moving particles and the mean
particle velocity. In any theory of sediment transport, the crux of the issue lies in the
proper evaluation of the number of particles entrained and maintained in motion by the
water stream. In Bagnold’s approach, sediment transport results from an equilibrium in
the momentum transfer between solid and liquid phases. The number of moving particles
is then found to be the ratio between the available energy and that expended during
the motion of one particle due to momentum transfers between the solid and liquid
phases. The mean-field treatment applied by Bagnold conflicts with a noticeable feature
of sediment transport: its intermittent nature at low flow rates. Both laboratory and field
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measurements reveal that particle movement occurs for a period of time followed by a
period in which no motion occurs (Grass 1970; Drake et al. 1988; Niño & Garc̀ıa 1998).
At low flow rates, intermittent motion occurs when the near-bed downstream velocity is
sufficiently high to destabilize stationary particles and set them in motion. This situation
corresponds to instances in which the instantaneous near-bed velocity outweighs its mean
value as a result of near-bed turbulence and does not correlate well with the mean flow
conditions far from the bed (Nelson et al. 1995, 2001; Schmeeckle & Nelson 2003). In
Einstein’s theory, sediment transport results from the imbalance between entrainment
and deposition. Intermittency in particle motion is usually taken into account by treating
it as a two-state Markov process (Lisle et al. 1998; Papanicolaou et al. 2002; Ancey
et al. 2006). A severe shortcoming with existing models of whatever sophistication is
that they give unrealistic statistical distributions of the solid discharge fluctuations; for
instance, they predict that the solid discharge gently fluctuates around its mean value
for equilibrium flow conditions, whereas experiments reveal the existence of wide and
frequent fluctuations (Ancey et al. 2006). Here, we develop a generalized birth-death
Markov process to describe the time variation in the number of moving particles. This
rather simple stochastic model is able to overcome the current limitations of Einstein-like
models and to predict a number of interesting features, such as the autocorrelation time
of the solid discharge.

In § 3 we describe our experimental facility. We run experiments in an inclined, tight
flume with a continuous particle supply and steady flow rate. This nearly two-dimensional
flume is assumed to be the simplest representation of sediment transport on the labo-
ratory scale and presents overwhelming advantages: the boundary conditions can be
controlled and most of the flow variables can be measured by image processing. Section 4
is devoted to experimental results and comparison with our theoretical model. Since
a quantitative comparison between theory and experiment is biased by any parameter
fitting, we test theory by analyzing the probabilistic features of the model. In § 5 we
summarize our more interesting findings and look ahead a little.

2. Theoretical framework
2.1. Objective and notation

We consider a two-dimensional, steady water stream flowing down a bed, the mean slope
of which is denoted by θ. The bed is made up of mobile spherical particles of equal
radius a and density %p. The water flow rate per unit width qw is prescribed at the
channel entrance, and the flume is supplied with particles identical to those making up
the bed. Figure 1 shows the flow configuration.

A few solid particles are entrained by the water stream: they can roll/slide along the
bed or they can leap and stay in saltation in the water stream for short time periods.
We refer to the former motion as the rolling regime and to the latter as the saltating
regime. As we are especially interested in weakly intense bed-load transport, we stress
flows with a fairly low fluid velocity; in this case the trajectory of a single particle exhibits
a succession of rests and moves in a rolling or saltating regime, which making it difficult
to discriminate the motion regime accurately. Here we no longer discriminate between
rolling and saltation, except when stated explicitly, and treat both these motions as a
single species which we call the moving particles.

In a typical bed-load transport problem, knowing the control parameters of this flow
configuration (qw, θ, a, %p), we wish to determine the flow properties: the flow depth h;
the solid discharge qs, that is, the number of particles per unit time conveyed by the flow,
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Figure 1. Sketch defining the flow configuration.

measured in m3/s; and the mean flow ūf = qw/h. Hence we consider a control volume
V within which we follow the particles and the motion of the fluid; we pose V = S × L,
where the length is denoted by L, the volume by V , and the cross-section by S = hW ,
where W represents the flume width.

In this section we restrict our attention to sediment transport at equilibrium, i.e., on
average, flow is steady and there is neither deposition nor erosion along the bed. In the
next subsection we show that the solid discharge can be computed as qs ∝ Nūp, where N
denotes the number of particles within the control volume V and ūp is the mean particle
velocity. In § 2.2 we develop a stochastic model for the number of particles in V, while
§ 2.5 is devoted to particle velocity. In § 2.2 we derive the so-called master equation, a
partial differential equation governing the time variations in P (n; t), with P (n; t) the
probability of finding N = n moving particles in the control volume at time t. General
and stationary solutions to the master equation are derived in § 2.3 and § 2.4, respectively.

2.2. Birth-death emigration-immigration process

The solid discharge can be defined as the flux of particles through a flow cross-section S:
qs =

∫
S up ·kdS, where k is the unit normal to S. This definition, suitable for continuous

fields, is not well suited to discrete elements, for which it is more convenient to introduce
the flow rate in terms of the probability P [up | x, t] that a particle crosses the control
surface S at position x and time t with velocity up,

qs =
∫

S

∫

R2
P [up | x, t] up · k |dx|dup. (2.1)

Under steady conditions we have ∂P/∂t = 0 and so this definition reduces to

qs = lim
V→∞

1
V

N∑

i=1

uivpS = lim
L→∞

vp

L

N∑

i=1

ui, (2.2)

where the ensemble average has been replaced by a volume average and vp is the particle
volume. Integration has been performed over the control volume V. We have also used
ui = up · k to denote the streamwise velocity component of particle i, and N to denote
the number of moving particles within the control volume. Below we shall define the flow
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Figure 2. The number of moving beads observed within the window varies with time depending
on the number of particles entering/leaving the window or being entrained/deposited from/on
the stationary bed.

rate ṅ = qs/vp as

ṅ =
1
L

N∑

i=1

ui. (2.3)

In order to compute the discharge equation, we need to establish the number N of
particles in motion and their velocities, which depend on the control parameters (qw, θ,
a, %p). We assume that the number of stationary beads within the bed is infinite.

We now consider the total number N(t) of particles in motion within the control
volume V at time t. Figure 2 sketches the particle exchanges within the control volume.
We describe sediment transport using an immigration-emigration birth-death model,
which is a particular generalized Markov birth process (Cox & Miller 1965), using the
following exchanges:
• A moving bead enters the window at rate λ0 > 0 by rolling/saltation from the

left (immigration). The probability that a particle arriving into the window in the time
interval t and t + ∆t is independent of t and N and we can write

P (n → n + 1;∆t) = λ0∆t + o(∆t).

• Moving beads leave the window independently at rate ν > 0 (emigration). The
transition probability is

P (n → n− 1;∆t) = nν∆t + o(∆t).

• Two processes enable entrainment of particles from the bed (birth): an individual
particle can be dislodged from the bed by the water stream at rate λ1 > 0; or a moving
bead can hit a stationary one and set it moving. This occurs at rate µ for any moving
bead within the observation window. In the former case, the related transition probability
is

P (n → n + 1;∆t) = λ1∆t + o(∆t),

while in the latter case, it can be expressed as

P (n → n + 1;∆t) = µn∆t + o(∆t).

• A moving bead can settle (i.e., come to rest) within the window, independently at
rate σ for each moving bead (death). The transition probability is thus

P (n → n− 1;∆t) = nσ∆t + o(∆t).

With these assumptions and using the usual arguments for setting up the forward
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equations of a Markov process with discrete states in continuous time (Cox & Miller
1965; Gardiner 1983), we obtain a set of equations

P (n; t+∆t) = α(n+1)∆tP (n+1; t)+P (n−1; t)(λ+(n−1)µ)∆t+P (n; t)(1−∆t(λ+nα+nµ))+o(∆t),

for n = 1, 2 . . ., and

P (0; t + ∆t) = αP (1; t)∆t + P (0; t)(1− λ∆t) + o(∆t),

for n = 0, with the short-hand notation α = σ + ν and λ = λ1 + λ0. The time increment
∆t is assumed to be sufficiently small that two events cannot occur in (t, t + ∆t). On
rearranging the terms and letting ∆t → 0, we arrive at the following master equation
describing the time variation in P (n; t):

∂

∂t
P (n; t) = (n+1)αP (n+1; t)+(λ + (n− 1)µ)P (n−1; t)−(λ + n(α + µ)) P (n; t), (2.4)

∂P

∂t
(0, t) = αP (1; t)− λP (0; t). (2.5)

The initial condition specifies that at time t = 0, there are N = N0 particles within the
control volume, so we set

P (n; 0) = δ(n−N0), (2.6)

where δ is the Kronecker delta function.
We now discuss the main assumptions underlying equation (2.4). Both entrainment

processes deserve further attention since they are the cornerstone of this theoretical
description. Another key point is related to the physical origin of the mathematical
formulation, its limitations, and the nature of the parameters λ0, λ1, µ, ν, and σ.

The main originality of the model lies in the treatment of particle entrainment. In
Einstein-like theories, particles are entrained because the drag/lift force exerted by the
water stream sometimes exceeds the resisting force (weight and bed friction) of a station-
ary particle (see below) and there is no collective entrainment (µ = 0). This results in a
purely Poissonian representation of particle entrainment (Lisle et al. 1998; Papanicolaou
et al. 2002; Ancey et al. 2006). This kind of entrainment reflects the erosive action of
water and thus is independent of the number of particles previously entrained. It also
implies that the total number of moving particles varies little with time, i.e., the variance
of N should be lower than its mean, in conflict with experimental and field observations
(Ancey et al. 2006). Here we include an additional entrainment process, which depends
on the number of moving particles and reflects the destabilization of bed particles and
their entrainment due to collisions with moving particles, which was clearly identified in
experiments and field surveys (Drake et al. 1988; Böhm et al. 2004). The effect would
be close to the splash function used for modelling sand drift (sand transport induced
by wind), although the physical processes are quite different. As shown later, this kind
of entrainment allows the probability distribution function of N to accommodate the
wide fluctuations of N seen in experiments. Although we sought alternative models for
collective entrainment, for instance by relating the probability of entrainment and local
particle arrangement, we failed to find a typical scenario supporting this idea. After many
trials, this assumption on collective entrainment was the simplest and most efficient we
could find.

Our statistical approach is likely to perform for a finite range of water flow rates.
Indeed, the flow rate must be sufficiently high for the probability of entrainment to be
appreciable, but not so high that entrainment occurs intermittently. This idea and its
implications can be more easily understood using Figure 3, which represents the time
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Figure 3. Fluctuations of the instantaneous velocity u around the mean value 〈u〉. (a) Mean
fluid velocity below the critical threshold uc. (b) Mean fluid velocity in excess of the critical
threshold uc. In both cases, particle entrainment occurs sporadically.

variations in the instantaneous fluid velocity u seen by a bed particle under steady flow
conditions. The mean fluid velocity is denoted by 〈u〉(y), where y is the height from a
reference level and the brackets stand for time-averaged values. The force exerting on
the particle by the fluid is usually split into three contributions: hydrostatic pressure,
drag, and lift. In the current models of entrainment on steep slopes, a particle is set in
motion whenever the combined action of gravity and fluid forces exceeds the particle
weight and the frictional force (Armanini & Gregoretti 2005); since in these models, the
mean lift and drag forces are directly linked to the mean fluid velocity 〈u〉(y), loss of
stability and incipient motion occur whenever the instantaneous fluid velocity exceeds
a critical threshold uc, which depends on bed slope, particle arrangement, and so forth
(Kirchner et al. 1990; Armanini & Gregoretti 2005). The probability of entrainment is
thus the exceedance probability P (u > uc) (Einstein 1950; Papanicolaou et al. 2002).

To determine how frequently these events occur, we require the characteristic time
between two events. We refer to τw as the waiting time between events, while the mean
duration of an entrainment event (i.e., during which P (u > uc)) is denoted by τent. [see
Figure 3(a)]. The exceedance probability Pc = P (u > uc) gives the time ratio τe/(τw+τe).
We introduce the Taylor macro scales of length and time, Lx and time τturb., which
represent the correlation length and time of large turbulent structures, respectively. For
open channel flows down rough surfaces, semi-empirical models give estimates of the
large-eddy length scale in the form Lx = Ah

√
y/h, where A is a constant close to unity

(Nezu & Nakagawa 1993); for steady flow conditions, the autocorrelation time macro
scale is then τturb. = Lx/〈u〉. Assuming that the autocorrelation time function can be
approximated by an exponential function, and using 1/τturb. = 1/τw +1/τent., we deduce
that the waiting time is

τw =
1− P 2

c

Pc

Lx

〈u〉 : (2.7)

thus the entrainment rate λ1 ∝ τ−1
w varies nonlinearly with the fluid velocity 〈u〉. Equa-

tion (2.7) also shows that for nearly constant probabilities Pc (i.e., when the mean fluid
velocity varies within less than one order of magnitude), λ1 scales linearly with the fluid
velocity, while keeping the fluid velocity constant and increasing fluid turbulence (thus
letting Pc to 1) increases entrainment rate substantially. This behaviour is consistent
with experimental observations at intermediate bottom shear stress (Sumer et al. 2003;
Cheng 2004).

This statistical description is likely to hold at intermediate bottom shear stress, i.e.,
for 〈u〉 < uc [see Figure 3(a)] or 〈u〉 > uc [see Figure 3(b)] provided that |〈u〉 − uc| < u′,
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where u′ denotes the root mean square velocity in the streamwise direction. Indeed, at
very low shear stress, i.e., when 〈u〉 is far below the critical threshold, entrainment may
occur on rare occasions when turbulent eddies that are on the same scale as the particle
produce imbalanced pressure fields around the particle, leading to a high lift event; such
events are strongly dependent on the details of the flow around of the particle and particle
arrangement of the bed, which cannot be conveniently related to the average conditions
(Nelson et al. 2001). Extreme value theory suggests that the number of instances in which
a particle is lifted up from the bed will follow a Poisson distribution (Coles 2001), but
with a rate λ1 independent of the mean velocity. Conversely, at high bottom shear stress
(i.e., for 〈u〉 À uc), any bed particle exposed to the stream is instantaneously set in
motion. In that case, bed load transport takes the form of a sheet flow separating the
bed from the water flow (Jenkins & Hanes 1998). This continuous process cannot readily
be described within our stochastic framework.

2.3. General solution
We obtain the general solution to the forward master equations (2.4)–(2.5) subject to
the initial condition (2.6). This solution can be found by introducing the probability
generating function (Gardiner 1983)

G(z, t) =
∞∑

n=0

znP (n; t),

which makes it possible to transform the master equations into a single partial differential
equation. Multiplying equations (2.4)–(2.5) by zn and summing the terms, we obtain

∂

∂t
G(z, t) = λ(z − 1)G(z, t) +

(
σ + µz2 + ν − (µ + σ + ν)z

) ∂

∂z
G(z, t). (2.8)

This first-order linear equation can be solved by seeking the first integrals of the associ-
ated characteristic equations (Garabedian 1964)

dt

1
=

dz

(α− µz)(z − 1)
=

dG

λ(z − 1)G
. (2.9)

These first integrals are easily seen to be

t =
1

α− µ
ln

|z − 1|
|α− zµ| + c1 and G = c2|α− zµ|−λ/µ,

where c1 and c2 are two constants of integration. The general solution to equation (2.8)
is thus a combination of the two independent first integrals

G(z, t) = (α− zµ)−λ/µf

(
e−t(α−µ) 1− z

α− zµ

)
, (2.10)

since z < 1 and provided that α > µ (see § 2.4) so that a stationary solution exists. The
function f in equation (2.10) is determined using the initial condition. At time t = 0, if
there are n = N0 beads within the control volume, setting t = 0 in (2.10) yields

G(z, 0) = zn = (α− zµ)−λ/µf

(
1− z

α− zµ

)
,

from which we obtain

f(x | N0 = n) =
(

1− αx

1− µx

)n (
α− µ

1− µx

)λ/µ

.
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Thus the complete form of G, given that the initial state is known, is

G(z, t | N0 = n) =
(

α− µ

(Kµ− µ)z + α−Kµ

)n+λ/µ (
(Kα− µ)z + α(1−K)

α− µ

)n

, (2.11)

where K = e−t(α−µ); we shall see in § 2.4 that the function K corresponds to the
autocorrelation function for flows at equilibrium. Equation (2.11) can be interpreted
as the convolution product† of independent binomial and negative variables S and T :
S ∼ Bin(n, p0) and T ∼ NegBin(n + λ/µ, p1), with p0 = (Kα − µ)/(α − µ) < 1 and
p1 = (α − µ)/(α −Kµ) < 1. With this decomposition in mind, we could interpret G as
the probability generating function of the random variable N = S + T . This decomposi-
tion makes sense only at short times: at long times, K → 0 and so p0 becomes negative.
At short times, this decomposition would mean that the random variations in N result
from two independent processes. To see the relative strength of each contribution over
time, let us compute the ratio of the mean of S to that of T ,

n

α− µ

(Kα− µ)2

(1−K)(αn + λ)
∝ n

αn + λ

α− µ

1−K
for t → 0;

at short times (t → 0, K → 1), the contribution of S prevails over that of T , but the
latter becomes increasingly important as time increases.

The generating function gives the transition probability Prob(N(t) = m | N(0) = n),
which is the coefficient of zm in the power series expansion of G(z, t | N0 = n). This may
be used to estimate the parameters α, λ, and µ when the system is out of equilibrium,
as is often the case for laboratory and field measurements.

As expected, G(1, t) = 1 and G(z, 0) = zn. When µ = 0, G is the probability generating
function of the binomial distribution Bin(n, K), and we retrieve the behaviour expected
under Einstein’s theory (Ancey et al. 2006): the sporadic motion of each particle is
described as a Bernoulli process, and as the sum of N Bernoulli processes is a binomial
process, N behaves like a binomial variable.

2.4. Steady-state solution
For steady flow conditions, the number of particles within the observation window forms
a stationary random process, which can be completely described by its probability dis-
tribution and its autocorrelation function. First, we find the stationary probability dis-
tribution Ps(n) = Prob(N = n) to which P (n; t) tends when the average flow conditions
are steady.

For steady-state conditions, G is independent of t and we express it as Gs(z). Equa-
tion (2.8) reduces to an ordinary differential equation

1
Gs

dGs

dz
=

λ

α− µz
,

with the boundary condition Gs(1) = 1.
For µ > 0, integrating this equation leads to

Gs(z) =
(

α− µ

α− µz

)λ/µ

,

† Recall that the generating function is directly linked to the characteristic function
φ(s) =

∑
k eiskP (k) by posing G(z) = φ(−i ln z) (Gardiner 1983). The characteristic func-

tion of the sum of independent random variables is given by the product of the characteristic
functions of these variables.
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the probability generating function of the negative binomial distribution

Ps(n) = NegBin(n; r, p) =
Γ(r + n)
Γ(r)n!

pr(1− p)n, n = 0, 1, . . . , (2.12)

with r = λ/µ and p = 1−µ/α, and where Γ denotes the gamma function (Davison 2003).
The mean is λ/(α− µ) and the variance is

Var(N) =
λα

(α− µ)2
. (2.13)

For µ = 0, we obtain Gs(z) = e−λ(z−1)/α, corresponding to the Poisson distribution of
rate r′ = λ/α,

Ps(n) = e−r′ r
′n

n!
, n = 0, 1, . . . ; (2.14)

this is also obtained by letting µ → 0 in the above negative binomial probability
generating function. Both results are consistent with the computations of § 2.3, since
Gs(z) = limt→∞G(z, t).

If either µ > 0 or µ = 0, a condition for existence of a stationary distribution is
that α > µ: the rate at which beads disappear is lower than their rate of spontaneous
appearance. For steady flow conditions, there are additional constraints on the parameters
ν, µ, σ, λ0, and λ1. On average, the number of particles that leave the observation window
must match the number of particles that enter it,

N̄σ + N̄ν = λ0 + λ1 + N̄µ, (2.15)

where N̄ is the time-averaged number of particles. Moreover, bed equilibrium implies
that on average, there is no variation in the bed elevation over time,

N̄σ = λ1 + N̄µ, (2.16)

and that N̄ν = λ0: the inflow matches the outflow.
To supplement our description of the statistical properties, we compute the autocorre-

lation function of the number of particles in motion within the window (Gardiner 1983),

ρ(τ) =
E[(N(t + τ)− N̄)(N(t)− N̄)]

Var(N)
=
E[N(t + τ)N(t)]− N̄2

Var(N)
,

where τ denotes the lag time and N̄ = E(N) = λ(α−µ)−1. For a statistically stationary
process, there is no dependence on t, so this definition reduces to

ρ(τ) =
E[N(τ)N0]− N̄2

0

Var(N0)
, (2.17)

where N0 is the initial number of particles within the control volume. The mean of
N(τ)N0 can be expressed as

E[N(τ)N0] =
∞∑

n=0

∞∑
m=0

Prob(N = m,N0 = n)nm = E[N0E(N(τ) | N0)],

in which the conditional mean of N(τ) given N0 appears. This conditional mean can be
obtained from equation (2.11) (Gardiner 1983),

E(N(τ) | N0 = n) =
(

∂G

∂z

)

z=1

= nK + λ
1−K

α− µ
,

and on substituting this into equation (2.17), we find that the autocorrelation function
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is of exponential form
ρ(τ) = e−τ/tc , (2.18)

where

tc =
1

α− µ
> 0 (2.19)

is the autocorrelation time.

2.5. Computation of the velocity of a single particle
We now use the energy balance equation to compute the velocity of a single rolling
particle, which is assumed to reach a steady regime nearly instantaneously once set in
motion (Ancey et al. 2003). On average, for steady flow conditions, the power supplied
by gravity and fluid drag force is entirely dissipated by contact forces

m′g sin(θūp) + P̄d = P̄c,

where m′ = m− 4πρfa3/3 is the buoyant mass, P̄d = F̄d · ūp is the power of drag forces
supplied to the particle, where F̄d = Cdπa2|uf −up|(uf −up) is the drag force, with Cd

the drag coefficient. The power Pc lost in contacts can be determined using results for a
single bead rolling on a bumpy line in air. In this case, Ancey et al. (1996) have shown
that dissipation can be broken into frictional and collisional parts

P̄c = κfm′gūp cos θ + κc
χ

2a
mū3

p,

where (2a)−1χūp is the collision rate (if the bottom beads are regularly and closely
arranged, then χ = 1), κc = 0.752 reflects collisional dissipation, and κf = 0.104 is a
bulk friction coefficient. The resulting equation of motion is a second-degree polynomial
in ūp,

m′g sin θ +
1
2
εCdπa2ρ(ūp − ūf )2 = κfm′g cos θ + κc

χ

2a
mū2

p, (2.20)

where ε = +1 when ūp < ūf and ε = −1 when ūp > ūf . The single physical solution is

ūp = k(Sh′)ūf , (2.21)

where the factor k(Sh′) is given by

k(Sh′) =
1−√Di

1− 4κc∆ρχ/(3εCd)
,

with

Di =
4

9Sh′
4κc∆χρ cos θ (tan θ − κf ) + 3εCd (κc∆ρχSh′ − cos θ (tan θ − κf ))

C2
d

,

in which we have introduced the density ratio ∆ρ = ρp/ρf . The parameter k(Sh′) is
expressed as a function of the Shields number

Sh′ =
ū2

f

2(∆ρ− 1)ag
. (2.22)

The Shields number is generally defined as the ratio of the bottom shear stress to the
equivalent in stress of a buoyant weight of the immersed particle [see equation (3.1)], but
because of the relatively small submergence, we slightly modify this definition for the
present purpose.

The particle usually moves more slowly than the fluid, but in certain circumstances—
for instance on steep slopes—the opposite can occur. According to equation (2.20), the
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condition ūp = ūf yields Sh′0 = cos θ (tan θ − κf ) /(κcχ∆ρ). When Sh′ < Sh′0, we have
ūp < ūf while for Sh′ > Sh′0, we have ūp > ūf ; in that case, only gravity supplies
energy to the particle while contact forces and water drag consume its energy. The latter
condition holds only for slopes exceeding a critical value: θ > θc = arctan κf ≈ 10%.

The previous analysis shows that the rolling regime has three sub-regimes of motion:
• for tan θ < κf , a solution is possible provided that the dimensionless number Sh′

exceeds a critical value

Sh′cr = 4 cos θ
κf − tan θ

3Cd
.

The value of Sh′cr may be determined by setting ūp = 0 in equation (2.20). In this
sub-regime, motion results mainly from the water action;
• for θ > θc and Sh′ < Sh′0, the single physical solution is given by equation (2.21)

with ε = −1. Motion results mainly from the action of gravity. However, such a solution
is usually nonphysical since the condition Sh′ < Sh′0 also implies h < 2a; and
• for θ > θc and Sh′ > Sh′0 the single physical solution is given by equation (2.21)

with ε = +1. Motion results mainly from the combined action of water and gravity.
When the particle is in a saltating regime, analytical computation of the velocity is

more delicate. Examples of computation have been given by a number of authors, in-
cluding Yalin (1963), Gordon et al. (1972), Abbott & Francis (1977), Bridge & Dominic
(1984), van Rijn (1985), Wiberg & Smith (1985), Niño & Garc̀ıa (1994), and Ancey et al.
(2002). To our knowledge, no analytic model provides realistic predictions of the trajec-
tories and velocities of a saltating particle in water, because of the strong nonlinearities
in the fluid forces exerted on the particle. This implies that numerical models should
be used to derive particle velocity. The experimental results by contrast are surprisingly
simple: it is mostly possible to derive linear or power-law relations between the velocities
and the flow conditions such as Shields number and shear velocity (van Rijn 1985). Given
the scope of this paper, it is best to use analytical albeit empirical expressions rather
than numerical models. Earlier experimental investigation in our two-dimensional flume
showed that the mean velocity of a single particle can be expressed as

ūp = 3.2(ūf − uc), (2.23)

with uc = 1.25 tan1/2 θ a critical velocity (Ancey et al. 2002).
Finally, note that it is possible to derive a single relation that holds for both rolling and

saltating regimes (Ancey et al. 2003), but for the sake of simplicity, we do not develop
this here.

2.6. Summary

Before addressing the validity of our approach by comparison with experiments, it is
worth outlining its salient characteristics. For flows at equilibrium, we can compute the
solid discharge as ṅ =

∑N
i=1 ui/L. In the previous subsections, we have computed the

number N of particles in motion and their individual velocity ui, which is assumed to be
directly linked to the fluid velocity through equations (2.21) and (2.23). We have shown
that N is a random variable with the following properties:

(a) its probability density is the negative binomial function (2.12) when particles are
entrained both individually and collectively (µ > 0), while it has the Poisson form (2.14)
when collective entrainment does not occur (µ = 0);

(b) when µ > 0, the variance must exceed the mean, while they are equal when µ = 0,
thereby providing a simple practical way to determine whether collective entrainment
takes place;
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(c) the autocorrelation function of N is the exponential function (2.18). As the particle
velocity is not random, the solid discharge ṅ must have the same autocorrelation as N ;

(d) once moving, a particle continues for an exponential time, with parameter σ. The
characteristic time (the mean duration of motion for one particle) is tσ|1 = 1/σ. The
time for which it is stationary has a more complicated distribution. Since particles move
independently, the mean deposition rate in a system of N = n particles is t−1

σ|n = nt−1
σ|1 =

nσ; since the probability distribution of N is the negative binomial distribution given by
equation (2.12), we deduce that the mean deposition rate is t−1

σ =
∑∞

n=0 t−1
σ|nProb(n) =

r(1− p)σ/p = N̄σ. The lag times must be distributed exponentially

Prob(∆tm→b) =
1
tσ

e−∆tm→b/tσ . (2.24)

The number of deposition events within a time interval δt can be computed similarly.
The probability that a particle that moves at time t settles by time t + δt is pd =
1−exp[−(σ+ν)δt]. Given that n particles are in motion at time t, the probability that k
particles settle within the time interval [t, t+ δt) is then binomial with parameters n and
pd; note that this holds true provided that δt is chosen long enough for several depositions
to occur, but sufficiently short for the number of particles that start moving and then
settle within the same interval to be zero. It follows that the unconditional probability
of observing k particles that settle by δt is negative binomial with parameters r and
p′ = p/(p + pd − ppd):

Prob(k depositions; δt) =
∞∑

n=k

Prob(k depositions | n; δt)Prob(n),

=
∞∑

n=k

Bin(k; n, pd)NegBin(n; r, p)

= NegBin(k; r, p′),

(2.25)

since Prob(n) is the negative binomial distribution (2.12) with parameters r = λ/µ
and p = 1 − µ/α when µ > 0. When µ = 0, the resulting distribution is Poissonian
with parameter r′′ = pdr. Note that these expressions for the probability of observing
k settling particles could have been used to derive the probability of waiting times—
for instance by using the classical arguments to show the duality between Poisson and
exponential distributions (Cox & Miller 1965)— and if we do so, we retrieve the result
reported in equation (2.24).

(e) On average, the relative fraction of particles that cross the control volume V with-
out coming to rest is ν/(σ + ν), wile the fraction of particles that come to a stop is
σ/(σ + ν).

(f) the entrainment coefficient λ1 is expected to vary nonlinearly with the fluid velocity
ūf , but for narrow ranges of ūf , the variation is almost linear;

(g) when flows are at equilibrium, the model parameters λ1, λ0, µ, ν, and σ must satisfy
conditions (2.15) and (2.16). The autocorrelation time is given by equation (2.19). The
ratio

tc
tσ|1

=
σ

σ + ν − µ

is lower than unity when there is no collective entrainment (µ = 0), while it may ex-
ceed unity when there is collective entrainment (µ > 0). Long range correlations are
the consequence of collective entrainment (memory effect due to the coupling between
entrainment and the number of moving particles); and
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(h) the coefficients λ1, µ, and σ represent the entrainment and deposition rates within
the control volume V of length L. They are thus proportional to L.
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Figure 4. Sketch of the experimental setup.

3. Experimental setup and procedures
3.1. Overview

We conducted our experiments in a narrow flume (see § 3.2). Sediment was replaced by
glass beads of equal size. Our experimental facility is probably the simplest representation
of bed load transport on the laboratory scale, with the advantages that boundary condi-
tions are perfectly controlled and a wealth of information can be obtained using imaging
techniques. Figure 4 shows a sketch of the experimental facility used. The nearly two-
dimensional feature of this facility has some disadvantages: for instance, the low width-
to-depth ratio leads to difficulties from the hydraulic point of view since turbulence may
be controlled by the side walls rather than the bottom; and using spherical particles of
the same size can be problematic in terms of bed arrangement, thus producing artifi-
cial conditions for particle entrainment. This was, however, the price paid for convenient
access to the details of the flows.

We ran 15 experiments with different inclinations and various flow rates. Bed load
equilibrium flows were achieved, i.e. neither erosion nor deposition of particles occurred
on average, over sufficiently long time intervals. Figure 5 provides a snapshot of all
experiments presented in this paper. Slopes and water discharges were selected so that
we could record a sufficient number of events for our statistical analysis. The features of
each run are summarized in Tables 1 and 2. The hydraulic conditions are specified using
classic dimensionless numbers. The flow Reynolds number is defined as Re = 4Rhūf/νw,
where Rh = Wh/(2h + W ) denotes hydraulic radius, ūf = qw/h the fluid velocity
(averaged in the y- and z-directions), νw the kinematic viscosity of water, and h the
time-averaged water depth. The Froude number Fr = ūf/

√
gh varied significantly over

the experimental duration and along the main stream direction. The mean Fr values are
reported in Tables 1–2. Although the mean Froude number exceeded unity, which means
that the flows were supercritical on average, the instantaneous values of Fr fluctuated a
great deal and frequent transitions to subcritical regimes occurred. This behaviour seems
very close to that observed in gravel-bed rivers, where the Froude number is also found
to fluctuate around the critical value (Grant 1997).

The solid concentration is defined as the ratio of the solid and the water discharges
Cs = qs/qw. Values reported in Tables 1–2 are low, which indicates that particle flow
was dilute. The ratio h/d is low, typically in the range 0.8–7. We used two definitions for
the Shields number: the Shields number is classically defined as the ratio of the bottom
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Figure 5. Overview of the experiments conducted at various solid discharges ṅ and slopes
tan θ. For each experiment, a detail of one filmed image is shown. See Tables 1 and 2 for the
experimental conditions.

shear stress to the stress equivalent of a buoyant force (Julien 1994),

Sh =
ρgh sin θ

(ρp − ρf )ga
, (3.1)

and we also use the variant given by equation (2.22), which makes more sense for shallow
flows. We report the mean particle velocities for the rolling (ūr) and saltating regime
(ūs). We use κr/s = Nr/(Nr + Ns) to refer to the number Nr of particles in a rolling
regime relative to the total number of moving particles N = Nr + Ns.

3.2. Channel and material used
Experiments were performed in a tilted, narrow, glass-sided channel, 2 m in length and
20 cm in height. The channel width W was adjusted to 6.5 mm, which was slightly
larger than the particle diameter (2a = 6 mm). In this way, particle motion was approx-
imately two-dimensional and stayed in the focal plane of the camera. The channel slope
tan θ ranged from 5% to 15%, but only experiments within the slope range 7.5–15% are
reported here.

The channel base consisted of half-cylinders of equal size (radius r = 3 mm) and
randomly arranged on different levels. Disorder was essential, as it prevented slipping of
entire layers of particles on the upper bed surface, which would have induced artificial
erosion conditions. The effects of bed disorder were addressed by Böhm et al. (2004).

Colored spherical glass beads with a nominal diameter 2a of 6 mm and a density
ρp of 2500 kg/m3 (provided by Sigmund Lindner GmbH, Germany) were used. They
were injected from a reservoir into the channel using a wheel driven by a direct current
motor and equipped with 20 hollows on the circumference, as depicted in Figure 4. For
the experiments presented here, the injection rate ṅ0 ranged from 5 to 21 beads per
second, with an uncertainty of less than 5%. This corresponded to a solid discharge per
unit width qs/W of 9–38×10−5 m2/s. The water supply at the channel entrance was
controlled by an electromagnetic flow meter provided by Krohne (France). The discharge
per unit width qw ranged from 4 to 10× 10−3 m2/s.

The hydraulic conditions (velocity profile, bed friction, etc.) have been specified in
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Table 1. Flow characteristics and time-averaged values of dimensionless numbers characterizing
bed load and water flow for tan θ = 10%. Varying parameter: Solid discharge ṅ. The notation
E10-6 means: tan θ = 10% and ṅ ≈ 6 beads/s.

Experiment E10-6 E10-7 E10-8 E10-9 E10-16 E10-21
number (e) (f) (g) (h) (i) (j)

tan θ (%) 10.0 10.0 10.0 10.0 10.0 10.0
ṅ0 (beads/s) 5.3 6.7 8.0 10.0 15.4 20.0
qw (10−3 m2/s) 4.15 4.42 5.38 5.54 8.19 10.31

h (mm) 10.2 10.8 12.2 12.5 16.9 19.4
uf (m/s) 0.41 0.41 0.44 0.44 0.48 0.53
ṅ (beads/s) 5.72 6.85 7.74 9.41 15.56 20.57

Re 4020 4090 4550 4570 5280 5910
Fr 1.42 1.37 1.38 1.36 1.24 1.26
Sh 0.95 0.95 1.10 1.10 1.30 1.59
Sh′ 0.113 0.120 0.135 0.139 0.188 0.216
Cs (%) 2.40 2.69 2.50 2.96 3.30 3.47
h/d 1.69 1.80 2.03 2.08 2.82 3.23

ūr (m/s) 0.063 0.074 0.065 0.075 0.075 0.072
ūs (m/s) 0.28 0.29 0.29 0.29 0.32 0.32
κr/s (%) 43.9 38.9 41.6 43.2 41.2 43.7

Table 2. Flow characteristics and time-averaged values of dimensionless numbers characterizing
bed load and water flow. The notation E7-6 indicates: tan θ ≈ 7% and ṅ ≈ 6 beads/s. See Tab. 1
for the experiments at tan θ = 10%.

Experiment E7-6 E7-8 E7-9 E7-11 E12-9 E12-16 E12-21 E15-16 E15-21
number (a) (b) (c) (d) (k) (l) (m) (n) (o)

tan θ (%) 7.5 7.5 7.5 7.5 12.5 12.5 12.5 15.0 15.0
ṅ0 (beads/s) 5.7 7.8 8.7 10.9 9.3 15.2 20.0 15.6 21.5
qw (10−3 m2/s) 10.00 11.54 13.85 26.15 2.97 3.85 4.46 2.31 2.92

h (mm) 18.9 20.8 24.9 40.8 7.0 8.2 9.4 4.9 6.7
σh(mm) 2.2 2.3 2.5 2.8 2.2 2.3 2.4 2.0 2.5
ūf (m/s) 0.53 0.55 0.56 0.64 0.42 0.47 0.48 0.47 0.44
ṅ (beads/s) 5.45 7.76 9.20 10.99 9.52 15.52 19.86 15.45 20.55

Re 5860 6230 6400 7720 3760 4360 4600 3680 3830
Fr 1.26 1.26 1.15 1.02 2.20 2.09 1.90 3.72 2.63
Sh 0.158 0.173 0.207 0.340 0.098 0.114 0.130 0.082 0.111
Sh′ 1.59 1.71 1.78 2.32 1.00 1.25 1.30 1.25 1.10
Cs (%) 0.95 1.17 1.16 0.73 5.58 7.02 7.74 11.65 12.23

ūr (m/s) 0.078 0.084 0.079 0.078 0.074 0.075 0.077 0.072 0.079
ūs (m/s) 0.35 0.36 0.33 0.31 0.24 0.28 0.30 0.18 0.23
κr/s (%) 31.2 30.3 33.3 32.4 78.4 72.6 63.9 95.1 82.2
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earlier papers (Ancey et al. 2002; Böhm et al. 2004). Although the flume was narrow,
its hydraulic characteristics were similar to those observed in wide channels with shallow
flows.

3.3. Experimental procedures
The experimental procedure can be split into three major steps. First of all, a particle
bed was built along the channel base, which remained stationary on average. To that end,
an equilibrium between the water discharge, solid discharge, bed elevation, and channel
slope was sought. This equilibrium was reached using the following procedure:

(a) The water discharge qw was set to a constant value.
(b) An obstacle (approximately 20 mm in height) was positioned at the downstream

end of the channel. The solid discharge ṅ0 at the channel entrance (or the injection
rate) was set to a constant value. The solid discharge qs was calculated by the relation
qs = π(2a)3ṅ0/6. The first beads supplied by the feeding system were stopped by the
obstacle at the channel outlet and started to form a bed. The bed line rose to the level of
the obstacle and beads began to leave the channel. After approximately 10 minutes, the
system arrived at bed-load equilibrium, i.e., there was no more bed deposition or erosion
over a sufficiently long time interval.

(c) In order to make the bed line parallel with the channel base, the water discharge
was then adjusted. After several iterations, we arrived at the configuration of a bed that
consisted of two to three almost stationary bead layers along the channel, for which the
bed line slope matched the channel base inclination. Average equilibrium conditions were
sustained over long time periods, typically as long as 30 minutes.
Once bed equilibrium was reached, the particles and the water stream were filmed using
a Pulnix partial scan video camera (progressive scan TM-6705AN), placed perpendicular
to the glass panes at 115 cm away from the channel, approximately 80 cm upstream from
the channel outlet. The camera was inclined at the same angle as the channel, behind
which lights were positioned. An area of L = 22.5 cm in length and 8 cm in height was
filmed and later reduced to accelerate image processing.

The camera resolution was 640 × 192 pixels for a frame rate of 129.2 fps (exposure
time: 0.2 ms, 256 gray levels). Each sequence was limited to 8000 images due to limited
computer memory; this corresponded to an observation duration of approximately 1
minute.

Images were analyzed using the WIMA software, provided by the Traitement du Sig-
nal et Instrumentation laboratory in Saint-Etienne (France). Positions of the bead mass
centers were detected by means of an algorithm combining several image-processing op-
erations; particle trajectories were calculated using a particle tracking algorithm (Böhm
et al. 2006).
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Figure 6. Experiment (g) E10-8. (a) particle exchanges between the bed and the flow: each bar
oriented upward indicates the number of beads that passed from the resting state to the rolling
regime over a given time interval δt ≈ 1/130 s; downward-oriented bars represent the number
of rolling particles coming to a halt. (b) Solid discharge ṅ as a function of time. (c) Variation
in the number of moving particles N . (d) Mean fluid velocity ūf as a function of time.

4. Experimental results
With our experimental facility, we can probe quantities such as the number of particles

that come to a halt or are entrained for some time interval. Figure 6 shows typical records
for four variables of interest: the number of particles passing from a resting to a moving
state (b → m) and conversely (m → b) as a function of time; the time variations in the
solid discharge ṅ; the number of moving particles N ; and the fluid velocity ūf . These
results were obtained for a mean bed slope of 0.1 and a solid discharge at the flume inlet
ṅ0 = 8 beads/s (experiment 10-8 in Table 1); the plots are typical of those results for
other solid discharges ṅ0 and slopes.

Figure 7 shows the variations in the solid discharge ṅ as a function of the mean fluid
velocity ūf . Like most laboratory experiments conducted with low water discharges, the
solid discharge varies nearly linearly with the mean fluid velocity. A similar dependence
is found if we replace ūf with the fluid discharge or the Shields number. The range of
ūf (0.41–0.64 m/s) was, however, not sufficiently wide to claim that the relation ṅ(ūf )
or qw was linear. Note the significant increase in the solid discharge when the bed slope
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Figure 7. Variation in ṅ with ūf . The dashed lines represent empirical trends adjusted on the
data: ṅ = 90ūf − 30 (dashed line) for tan θ = 0.1− 0.125 and ṅ = 45ūf − 18 (long dashed line)
for tan θ = 0.075.

is increased from 7.5% to 10%, and the small changes when the slope is increased from
10% to 12.5%. The strong dependence of solid discharge on channel inclination and the
linearity with water flow rate are reflected by many empirical formulas. For instance,
Rickenmann (2001) deduced from flume experiments that qs ∝ tan2(θ(qw − qc)), with qc

a critical water discharge corresponding to incipient motion. Incidentally, note that here,
for the sake of simplicity, no correcting factor was applied to take into account sidewall
effects, as usually done in hydraulics for narrow channels; if we correct the influence of
sidewalls on the mean fluid velocity by using the hydraulic radius rather than the flow
depth, we obtain a smoother variation in ṅ with bed slope (Frey et al. 2006).

Below we assess the reliability of our model by comparing its predictions with our
experimental data. As the model is not closed, we need to estimate some of its parame-
ters, which biases comparison to some degree. In § 4.1 we outline how we determine the
unknown parameters. In § 4.2 we analyse the probability distribution and the autocor-
relation function of the number of moving particles. Although there is good agreement
between theory and experiments as regards the probability distribution function of N ,
there is an appreciable difference for the autocorrelation time tc, perhaps as a conse-
quence of collective effects when particles come to rest (§ 4.3). In § 4.4, we investigate the
dependence of the entrainment rates on the mean fluid velocity. A striking result emerges
in the analysis of the mean particle velocity (§ 4.5): we show that ūp exhibits little de-
pendence on ūf , which contrasts with physical intuition and theoretical analysis (§ 2.5).
Finally, in § 4.6, we try to estimate the different sinks of energy for flows at equilibrium.

4.1. Parameter estimation
A classic impediment to any approach to sediment transport is that the models contain
parameters that cannot be computed analytically, because they are empirical or represent
complex processes whose description requires heavy computation. Our model does not
disprove this rule. It involves eight variables: the number of moving particles N , the
mean particle velocity ūp, the solid discharge ṅ, the inflow rate λ0, the entrainment rate
of individual particles λ1, the collective entrainment rate µ, the deposition rate σ, and
the outflow rate ν. The fluid discharge qw and the channel slope θ are control parameters
of our experiments. These variables are not independent (see § 2.6), as we have found
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Figure 8. Comparison between the measured entrainment rate E and estimated value

Ê = λ1 + µN̄ . The dashed line represents the first bisectrix.

five relationships among the eight parameters related to the solid discharge; thus we
would need three additional relations to close our system. Here, the closure equations
are replaced with data fitting on three variables. Since we tuned the solid flow rate at
the channel entrance for the flow to be at equilibrium, we consider that the flow rate
and the number of particles are prescribed. Moreover, we can measure the settling rate
to deduce σ. This provides us with the three required additional equations. We therefore
assume below that λ0, N , and σ are prescribed at the channel inlet or measured within
the control volume. Indeed, from the record N(t), we infer the mean and the variance,
N̄ and VarN , respectively. The deposition rate σ was computed as the ratio of the total
number of particles deposited to the experiment duration (approximately 1 minute).

We can then estimate the coefficients µ, ν, and λ1 using equation (2.13) and the
equilibrium conditions (2.15)–(2.16), yielding

µ = λ0

(
1
N̄
− 1

VarN

)
+ σ

(
1− N̄

VarN

)
, λ1 = (λ0 − N̄σ)

N̄

VarN
− λ0, and N̄ν = λ0.

(4.1)
The autocorrelation time t̂c of ṅ(t) and N(t) is given by equation (2.19). In practice, the
autocorrelation function was estimated by taking the Fourier transform of N(t)

ρ̃ = F−1(F(N)F(N)∗),

where F denotes the Fourier transform, F(N)∗ is the complex conjugate of F(N), and
F−1 denotes the inverse Fourier transform. Another way to estimate the autocorrelation
time is to fit the exponential form (2.18) directly to the data to estimate the experimental
correlation time t̃c. The estimate depended on the number of observations used to fit the
exponential function. For instance, for experiment (g) E10-8, we obtained t̃c = 0.283 s
when taking the first 50 data against t̃c = 0.243 s when a row of 100 data was used. The
empirical autocorrelation function may become negative.

The parameter estimates are reported in Table 3. Figure 8 shows the measured en-
trainment rate E and its estimated value Ê = N̄µ + λ1, computed from the estimates of
µ and λ1. The perfect match confirms that the flows were at equilibrium; Ê was in fact
obtained from the measurement of the settling rate σ using equation (4.1).
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Table 3. Measured values of the total number of particles moving within the window (mean
values N̄ and variances VarN), autocorrelation times t̂c computed using equation (2.19), auto-
correlation times t̃c estimated by fitting an exponential curve to the data, and inferred values
of the model parameters obtained using equation (4.1). Times in s, rates in beads/s.

No. N̄ Var(N) t̂c t̃c λ0 λ1 ν σ µ

(a) 7.06 22.53 0.59 0.36 5.45 6.59 0.77 4.67 3.74
(b) 9.83 30.94 0.52 0.27 7.76 11.21 0.79 5.28 4.14
(c) 12.19 35.43 0.50 0.29 9.20 15.14 0.75 5.05 3.81
(d) 14.86 38.51 0.46 0.23 10.99 21.40 0.74 4.91 3.47
(e) 9.46 70.74 1.30 0.37 5.72 1.53 0.60 5.13 4.96
(f) 9.86 36.89 0.67 0.36 6.85 7.80 0.69 4.86 4.07
(g) 13.76 64.55 0.85 0.24 7.74 8.42 0.56 4.95 4.34
(h) 13.67 49.09 0.66 0.33 9.41 11.24 0.69 4.74 3.91
(i) 22.83 72.09 0.61 0.21 15.56 22.07 0.68 4.52 3.56
(j) 34.21 128.91 0.75 0.17 20.57 24.78 0.60 4.39 3.67
(k) 21.89 123.38 1.07 0.26 9.52 10.96 0.43 4.84 4.34
(l) 32.39 182.68 1.07 0.20 15.52 14.64 0.48 4.77 4.32

(m) 38.52 222.88 1.15 0.23 19.86 13.62 0.52 4.51 4.16
(n) 43.31 214.31 1.08 0.17 15.45 24.49 0.36 4.21 3.64
(o) 47.86 130.06 0.63 0.12 20.55 55.72 0.43 3.90 2.74

4.2. Number of moving particles
Figure 9 shows the probability density function of N for experiments (a)–(o). The dots
represent the empirical probabilities, while the dashed line stands for the negative bi-
nomial distribution (2.12), the parameters of which were estimated using the measured
values VarN and N̄ reported in Table 3; for the sake of readability, we plotted the discrete
probability mass functions as continuous curves.

First note the fairly good agreement between the data and theoretical probability
distribution for all experiments. Local departures and data scattering are seen, but they
are usually associated with low probabilities. Since 8’000 data were used for each run,
empirical probabilities lower than 10−3 are unimportant. Deviations are also visible at
N = 0. In that case, it should be kept in mind that from the algorithmic point of view,
it was difficult to discriminate the instances in which a particle was really set in motion
from those in which a bed particle just swung around its rest position (Böhm et al. 2006),
which might introduce slight errors when counting the number of moving particles. The
plots confirm that the negative binomial distribution is a good candidate for describing
the statistical behaviour of N over a wide range of flow conditions. If we set µ = 0
(Einstein-like theory), the theoretical distribution is no longer the negative binomial
distribution (2.12), but the Poisson distribution (2.14), whose variance and mean are
equal. This supports the idea of collective entrainment or, at least, does not undermine
the simple assumption used for modelling entrainment.

There is a significant change in the distribution shape when the water discharge in-
creases. When it is low [e.g., panel (e) in Figure 9], the empirical distribution is close to
a straight line on a logarithmic scale, implying that the number of particles decays ex-
ponentially within the observation window. For experiment (e), the discrepancy between
empirical and theoretical probability distributions is the most pronounced of all runs,
which may mean that theory performs less well for these discharges (as expected, see
§ 2.2). With increasing water discharge, the probability distribution takes a bell shape,
which is first skewed, then nearly symmetric at the highest slopes and flow rates [see panel
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Figure 9. Empirical probability density of the total number of moving beads N (black dots). The
dashed line is the probability density function of the negative binomial distribution. Experiments
(a–i).
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Figure 9. (Continued). Empirical probability distribution of the total number of moving beads
N (black dots). The dashed line is the probability density function of the negative binomial
distribution. Experiments (j–o).

(o) of Figure 9]. In the case of run (o), the discrete empirical probability distribution can
be approximated by a Gaussian distribution.

For each run, the sample variance exceeded the mean, but the ratio VarN/N̄ decreased
with increasing water discharge (or Shields number). For instance, for slope tan θ = 0.1,
the ratio VarN/N̄ was as high as 7 for run (e) and dropped to below 3 for run (j). Thus
for each run, the number of moving particles varied frequently and widely, but with
increasing water discharges, wide fluctuations became less frequent, which substantiates
the idea that at high water discharges, sediment transport becomes more continuous.

Figure 10 shows the autocorrelation functions of the total solid discharge, the number
of moving beads, and the theoretical curve (2.19), where the autocorrelation time tc
is replaced by its estimate t̂c given by equation (4.1). The striking point is that the
autocorrelation functions ρ̃ for the solid discharge and the number of moving particles
are quite similar for each run, as theoretically expected (see § 2.6), which shows that the
instantaneous particle velocities were never too far their mean values. The behaviour of
ρ̃ at short times is nearly exponential, as expected, but the theoretical autocorrelation
time t̂c is much longer than the experimental value t̃c. The values of t̂c and t̃c given in
Table 3 show that t̂c/t̃c ranges from 1.6 to 6.3, with a mean value of 3.5. We shall see
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that to a large extent, this discrepancy stems from the statistical behaviour of deposition
events (see § 4.3), which are more frequent than theoretically computed, but of smaller
amplitude.

Despite this shortcoming of the theoretical model, the salient features of solid-discharge
fluctuations are correctly described, notably the ratio tc/tσ (see § 2.6) ranges from 2 to
9, which shows that the solid discharge exhibited long-range fluctuations, the durations
of which are much longer than the typical timescale associated with particle motion.
Figure 11 shows the autocorrelation functions for the number of moving particles N , the
solid discharge ṅ, the mean fluid velocity ūf , the bed elevation, and the theoretical num-
ber of particles for run (g). The theoretical curve lies midway between the autocorrelation
curves for the bed elevation and mean fluid velocity. The solid discharge is associated
with the shortest autocorrelation time. The autocorrelation function of ūf may be ques-
tionable since for a turbulent flow, we would expect shorter autocorrelation times, but
one must recall that ūf is the mean velocity within the entire window, that is, ūf is
a double averaged velocity (in time and space), which explains why fastest fluctuations
were dampened out.

4.3. Deposition rate

Another interesting aspect of our experiments is the deposition rate of moving particles.
From time series such as that in Figure 6(a), we can compute the lag times ∆tb→m

between two deposition events within the observation window. We can then infer the
statistical properties of the lag times ∆tb→m. Figure 12 reports the empirical probability
distribution of ∆tb→m for runs (a)–(o). On the same figures, we have plotted the theo-
retical curve given by equation (2.24), which is an exponential density with parameter
t−1
σ = (1− p)rσ/p = N̄σ. As in § 4.2, given the size of our samples, the empirical proba-

bilities make sense only when they are in excess of 10−3; moreover, since the acquisition
rate was approximately 130 Hz, we could not resolve events that occurred within time
intervals shorter than 10 ms.

For low flow rates and gentle slopes (tan θ 6 0.1), the theoretical probability distrib-
ution provides a crude approximation to the empirical distribution (runs a–i): while the
shape of the empirical distribution is well captured (exponential behaviour), the devi-
ation between the theoretical and empirical curves suggests that the mean lag time is
longer than predicted. At higher flow rates or steep slopes, the model yields even cruder
approximations, but still captures the main trend. The deviation between theoretical
and experimental curves is more pronounced for experiments conducted at tan θ = 0.15.
Figure 13 compares the expected mean lag time tσ with the mean of the experimental
samples ∆t̄mb. On the whole, the agreement is good, but a closer look shows that the
mean experimental lag time is twice the expected value tσ: deposition events occur more
frequently empirically than assumed with our model.

If we plot the probability of observing nm→b particles settling during a time interval
δt = 1/130 s, there are less substantial differences between the theoretical and empirical
distributions. Figure 14 shows these probability distributions for runs (a)–(o). Theoreti-
cally, the number of settling particles follows the probability distribution (2.25) derived
in § 2.6. The behaviour at low nm→b values is well captured by the theoretical curve: for
all slopes and flow rates, the data fall onto the theoretical curve, for nm→b as large as 3 to
6. For larger nm→b values, there are significant deviations between data and predictions.
Experimentally, we observe an exponential decay of the number of settling particles,
which shows that occasionally, a group of several particles (up to 12–14 particles at the
steepest slopes) can come to rest. The exponential decay is observed for all slopes and
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Figure 10. Autocorrelation functions of the number of moving beads (solid line) and the solid
discharge (dashed lines). Dotted lines stand for the theoretical autocorrelation function (2.19),
when the autocorrelation time t̂c is evaluated using equation (4.1). Experiments (a–i).
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Figure 10. (Continued). Autocorrelation functions of the number of moving beads (solid line)
and the solid discharge (dashed lines). Dotted lines stand for the theoretical autocorrelation
function (2.19), when the autocorrelation time t̂c is evaluated using equation (4.1). Experiments
(j–o).

discharges. The theoretical probability also entails exponential decay, but its decay rate
is much larger (by a factor or roughly ten) than the empirical rate.

In conclusion, we observe empirically that deposition occurs a little less frequently
and the number of deposited particles over short time intervals can be much larger than
expected with our model. This higher activity contributes to decreasing the autocorre-
lation time tc of the solid discharge, which may explain why we only found the order of
magnitude of tc. Note also that Table 3 shows little correlation between the deposition
rate σ and the fluid velocity ūf , which may suggest that σ is a constant parameter.



Coarse particles in a water stream 29

0 0.25 0.5 0.75 1 1.25 1.5

t ( s )

0

0.2

0.4

0.6

0.8

1

Ρ~

ç

ç
ç
ç
ç

ç
ç

ç

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç ç

´

´

´

´

´

´

´

´

´

´

´

´
´
´
´
´ ´ ´ ´ ´

Figure 11. Autocorrelation functions of the number of moving particles (solid line), solid dis-
charge (dashed line), mean fluid velocity (crosses ×), bed elevation (empty circles ◦), and the-
oretical autocorrelation functions (dotted line), given by equation (2.19). Data from run (g)
E10-8.



30 C. Ancey, A. C. Davison, T. Böhm, M. Jodeau, P. Frey
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Figure 12. Probability distribution of lag times: dots represent empirical probabilities, while
the solid line stands for the theoretical curve (2.24). Experiments (a–i).
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Figure 12. (Continued). Experiments (j–o).
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Figure 14. Probability distribution of the number of particles that come to a halt during a time
interval δ: dots represent empirical probabilities, while the dashed line represents the theoretical
distribution (2.25). Experiments (a–i).
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Figure 14. (Continued). Experiments (j–o).
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4.4. Entrainment rates
Figure 15 shows how the entrainment rates λ1 and µ vary with the mean fluid velocity
ūf and how λ0 is related to λ1. Figure 15(a) reveals a linear relation between the inflow
coefficient λ0 and the entrainment rate λ1 for the gentlest slopes and lowest flow rates
(tan θ 6 0.1 and ṅ < 16 beads/s). At higher flow rates or for steep slopes, there is no
clear trend, but this may stem from the dearth of data. At very low entrainment rates,
the influx coefficient λ0 is much higher than λ1, suggesting that bed load transport can
take place with little entrainment of isolated particles.

Figure 15(b) shows that the entrainment rate λ1 grows with increasing fluid velocity.
There is no very clear trend, but it appears that the data related to slopes tan θ = 0.1
and tan θ = 0.125 collapse onto a single straight line, while the data corresponding to
tan θ = 0.075 form a parallel line. This closely reflects the behaviour observed for the solid
discharges in Figure 7, with the same reservation about the role of sidewalls. This strong
dependence on slope suggests that theoretical analysis of incipient motion on sloping beds,
which provides weak dependence on cos θ, underestimates the influence of bed slope on
entrainment. The linear variation in λ1 with ūf is consistent with the heuristic arguments
presented in § 2.2. The estimated waiting time given by equation (2.7) is around 50 ms if
we take the typical values Pc = 0.5, Lx ∼ h = 2 cm, and 〈u〉 ∼ ūf = 50 cm/s, consistent
with the mean lag time values reported in Figure 13 (since ∆tm→b ≈ ∆tb→m in a steady
state). For the highest bed slope tan θ = 0.15, we observe a drop in the entrainment
rate with increasing fluid velocity, which is probably directly linked to the very low flow
submergence conditions for this slope.

Figure 15(c) shows that the collective entrainment coefficient µ decreases nearly lin-
early with increasing fluid velocity, but this decay rate is very low since it passes from 4
beads/s to 3 beads/s when the mean fluid velocity is increased from 0.4 to 0.65 m/s. It
may be reasonable to consider it as a constant parameter.
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Figure 15. (a) λ0 as a function of λ1; the dashed line represents the experimental trend
λ0 = 5 + λ1/3 + 5. (b) Entrainment rate λ1 as a function of the mean fluid velocity; the
dashed line represents the experimental trend λ1 = 200(ūf − 0.4) for slopes tan θ > 0.1, while
the long-dashed line stands for the experimental trend λ1 = 150(ūf −0.5). (c) Entrainment rate
µ as a function of the mean fluid velocity; the dashed line represents the experimental trend
µ = 2.3− 5ūf .
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4.5. Particle velocity
Figure 16 shows how the mean particle velocity varies with fluid velocity for particles in
a rolling regime [Figure 16(a)] or in a saltating regime [Figure 16(b)]. It is striking that
the mean velocity ūr of rolling particles is almost independent of fluid velocity in our
experiments, while theoretically we obtained a nonlinear increase in ūr with ūf (see § 2.5)
in full agreement with earlier observations, when a single particle was set in motion on
a fixed rough bed (Ancey et al. 2003). Moreover, the order of magnitude of ūr predicted
by our theory is approximately 20 cm/s for tan θ = 0.1, while experimentally, ūf was
closer to 6 cm/s.

The same observation applies to the saltating particles, whose mean velocity exhibits
little correlation with the mean fluid velocity. Contrary to the rolling velocity, the semi-
empirical relation (2.23) intersects the data, but the dependence of the saltating velocity
ūs on ūf is much more pronounced theoretically than experimentally.

Although the flows were dilute, there was no clear relation between the mean velocity
of one particle of a system of N moving particles and the mean velocity of an isolated
particle, which was entrained alone by a turbulent water stream. For the rolling regime,
this may be quite easily understood: because the rolling particles moved on a mobile
bed, the path was less regular in our bed-load experiments than in our earlier experi-
ments, where a single particle was in motion down a corrugated stationary bottom. This
probably induced an increase in the energy dissipation. What is difficult to understand,
however, is the very weak dependence of ūs on ūf . This has important consequences
in the computation of the solid discharge ṅ. Recall that ṅ =

∑N
i=1 uivp/L, with vp the

particle volume; if the particle velocity ui ≈ ūp is nearly independent of ūf , then we can
approximate

ṅ ≈ Nvp

L
ūp,

and the dependence of ṅ on ūf is entirely contained in N . This contradicts the com-
mon assumption in Bagnold-like models, where the mismatch between the mean fluid
and particle velocities is the control parameter of momentum transfers and thus of the
solid discharge. This may explain why Bagnold’s approach performs poorly at low water
discharges.

4.6. Energy dissipation
In absence of particles, energy supplied by gravity is entirely dissipated by turbulent
structures. When particles can be entrained, another energy sink is due to momentum
and energy transfer between water and particles. To evaluate the efficiency of this energy
sink, we compute the ratio of the turbulent power

Pt = ρgqwL sin θ − N̄ F̄Dūp,

to the power supplied by gravity to the control volume

Pg =
∫

V
ρg · udV = ρgqwL sin θ.

In the particle energy budget, we neglect the energy dissipated due to particle spin or lift
force. The mean drag force was evaluated using the relation F̄D = Cdπa2(ūp − ūf )2/2,
with Cd = 0.5 the drag coefficient. In the numerical computations, we distinguished the
particles in rolling and saltating regimes (see Tables 1 and 2).

Figure 17 shows how Pt/Pg varied with the bottom shear stress ρgh sin θ. For gentle
slopes (tan θ < 0.1) and moderate solid discharges (ṅ < 16 beads/s), almost all energy
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Figure 16. (a) Variation of the rolling velocity with the mean fluid velocity. (b) Variation of
the saltating velocity with the mean fluid velocity; the solid line represents the velocity of a
single isolated particle, as predicted by equation (2.23) for tan θ = 0.1.

was dissipated by turbulence—the ratio Pt/Pg remains close to 90%—independently of
the bottom shear stress. When the solid discharge is increased or for steep slopes, there is
a significant drop of the turbulent-energy contribution to the total energy. For instance,
for run (o) (tan θ = 0.15 and ṅ = 16 beads/s), 25% of the energy supplied by gravity
is dissipated by turbulence against 75% by momentum transfers with particles. As for
particle velocity, the independence of the ratio Pt/Pg and ūf indicated that for our
experiments, there was no real coupling between the solid and water phases through
energy balance, contrary to what is assumed in Bagnold’s approach.
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Figure 17. Variation in the ratio Pt/Pg with the bottom shear stress.
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5. Concluding remarks
On the macroscopic scale, sediment transport seems physically simple since the solid

discharge is usually found to be a linear function of the water discharge. If the prob-
lem is addressed from a mechanical perspective, the reasons why we observe this simple
behaviour are still unclear despite much research over the last century. Recently, more
fundamental experiments have been conducted to gain insight into the behaviour of par-
ticles and the connection between behaviour on the macroscopic and particle scales. Typ-
ical examples include the experimental and numerical investigations led by Schmeeckle &
Nelson (2003), who tried to clarify the role of turbulence in incipient motion of coarse par-
ticles, or the experiments performed by Charru et al. (2004), who analysed entrainment
and motion of coarse particles under laminar flow conditions. With the same objective in
mind, we ran experiments in a narrow channel, where coarse particles (glass beads) were
entrained by a turbulent water stream down a steep slope (7.5% to 15%). The particle
trajectories being two-dimensional, we were able to measure numerous quantities, from
the particle velocity to the number of entrainments/depositions per unit time. Although
very idealized with respect to sediment transport in gravel-bed rivers, our experimental
facility provides a realistic experimental basis for understanding the physical processes
involved in sediment transport.

To interpret our data, we needed a theoretical framework. The intermittent nature
of solid discharge at low water discharges led us to develop a stochastic model. This
approach has its roots in Einstein’s pioneering work (Einstein 1950), but although this
earlier theory includes some ingredients essential to model sediment transport, it relies
on statistical assumptions that have turned out to be unrealistic, thus undermining the
entire approach. For instance, in Einstein’s theory and subsequent variants, fluctuations
of the solid discharge are Gaussian, whereas field and laboratory measurements show
wider and more frequent fluctuations. In this paper, we proposed a simple theoretical
model which essentially describes what happens within a control volume. The number
of particles within this window can vary as a result of inflow, outflow, entrainment, and
deposition of particles. Our model scrupulously follows this mass balance principle and
adds a fundamental ingredient: particles arrive and leave the window randomly, and are
entrained and deposited randomly. Mass balance results in a birth-death immigration-
emigration Markov model. Two crucial assumptions are that particles can be entrained
because of (i) water effects and (ii) collisions with moving particles. The latter assumption
enables feedback between the moving particles and those at rest, which turns out to be
essential for explaining the existence of wide fluctuations. Indeed, if we remove this
feedback (µ = 0), our model provides predictions that closely resemble Einstein’s results.

A puzzling point is that in this purely counting vision of bed-load transport, we do not
make the feedback dependent on water flow. Intuitively, we could expect that the water
stream cannot entrain any number of particles, notably because of the energy constraint
that limits particle entrainment and transportation. This would plead in favour of a
control of water flow conditions on sediment transport via momentum transfers, as argued
by Bagnold (1966, 1973) and subsequent authors (e.g., see Seminara et al. 2002). Within
this approach, if some part Pp of the total energy supplied by gravity acceleration is
allocated to particles’ motion, then the total number of moving particles must satisfy

N̄ = Pp/(F̄Dūp),

as shown in § 4.6. Here, it clearly appears experimentally that for bed inclinations as steep
as 10%, flow was sufficiently dilute and vigorous for turbulence to be the main energy sink
(see Figure 17); the energy dissipated by particle motion (Pp) does not exceed 15–20% of
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the total and is independent of the fluid velocity. This contradicts Bagnold-like models:
if Pp remains nearly constant, the number of moving particles should decrease with
increasing fluid velocities if N̄ is controlled by momentum transfers. With our model, we
have shown that the number of moving particles does not depend explicitly on the water
flow conditions: to some extent (for µ > 0), water flow dictates how many particles can
be dislodged from the bed and entrained into the flow, but it loosely controls the number
of settling particles and the number of particles set in motion because of collisions. In a
steady state, the entrainment rate E = µN̄ + λ1(ūf ) must balance the deposition rate
D = σN̄ , which yields a variation in the total number of moving with fluid velocity in
the form of a linear function (if µ and σ are constant)

N̄ =
λ1(ūf )
σ − µ

.

With the solid discharge defined as the product of the number of moving particles
N and the particle velocity, our theoretical model was then completed by computing
the mean particle velocity. Surprisingly, this computation was not indispensable: for our
experiments the mean velocity of a particular system did not depend strongly on fluid
velocity (see figure 16), whereas for a single particle entrained by the turbulent stream,
the particle velocity varies nearly linearly with the mean fluid velocity (Ancey et al. 2002,
2003). A striking and unanticipated result is that the linearity between solid discharge
and fluid velocity stems mainly from the dependence of N on ūf .

Our final stochastic model counts the number of moving particles, as depicted by
Figure 2. The inflow rate is denoted by λ0, the outflow rate by ν, the deposition rate by
σ; for entrainment, we distinguish the entrainment rate induced by water (λ1) from the
collective entrainment rate (µ). For flows at equilibrium, the solid discharge ṅ corresponds
to the inflow and outflow rates: ṅ = λ0 = N̄ν. The other parameters depend on the
size of the window and specifically on its length L, and the fluid velocity. We cannot
compute these parameters analytically, but their dependence on ūf can be anticipated.
Experimentally, we found that µ and σ were almost constant [see Figure 15(c) and
Table 3], whereas λ1 was nearly proportional to the fluid velocity [see Figure 15(b)].
In the model, we did not discriminate between rolling and saltating particles; a natural
development would be to distinguish these two species and to include additional equations
to describe the population exchanges between them, which should enhance the model
accuracy.

This stochastic model enables us to predict a number of salient statistical features
characterizing the macroscopic behaviour of our system. The fluctuations in the solid
discharge or the number of moving particles are well described (see Figure 9). The model
also provides reasonably good estimates of the autocorrelation function and the statistical
properties of deposition events for low solid discharges and gentle slopes. At higher solid
discharges and for steep slopes, there is an increasing divergence between model predic-
tions and our data, presumably reflecting the change in behaviour due to the increase in
slope; this change was expected for slopes in excess of 10% (see § 2.5). We firmly believe
that taking a closer look at statistical properties of solid discharge is of fundamental
importance to understanding natural phenomena. Surprisingly, simple power-law models
relating the sediment flow rate to the water flow depth can perform better than more
sophisticated physically-based models (i.e., models that take into account a number of
physical processes such as a threshold for incipient motion, nonlinear interaction with
water velocity, etc.) for natural gravel-bed rivers (Barry et al. 2004). One possible expla-
nation lies in the measurement protocols used in the field and laboratory. For gravel-bed
rivers, hydraulicians and geomorphologists use various systems (Helley-Smith sampler,
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bed-load trap) to measure bed load by capturing sediment over a given time interval.
In the laboratory, hydraulicians impose the solid discharge at the flume inlet (hopper
supplying the flume) or measure it at the outlet. For the former protocol, the crux of
the issue lies in the proper selection of the sampling time (ranging from a few seconds to
several minutes); this difficulty of selecting a proper time scale is illustrated by the large
differences among various measurement systems (Bunte & Abt 2005). In § 2.6, we have
found that the number of settling particles is negative binomial, with mean r(1− p′)/p′

[see equation (2.25)], where p′ is a parameter that depends nonlinearly on the time in-
terval δt during which the measurement is taken. From this perspective, this is little
hope of establishing a direct link between trapped sediment and solid discharge without
taking the random nature of transport into account. Experiments in the laboratory pose
other problems: since bed load is imposed or measured at the inlet or outlet, one only
has an idea of the number of particles that emigrate or immigrate (parameters ν and λ0

of the model) from/into the control volume. At low water discharges, the mean waiting
time between two entrainment events is long; if the typical duration of the experiment
is shorter than the waiting time, it is likely that no emigrating particle is detected and
one may conclude that the solid discharge is zero. From this perspective, the threshold
for incipient motion is probably time-dependent at low water discharges, a point that
is never taken into account in hydraulic computations and may explain the discrepancy
between laboratory and field measurements.

Our model is sufficiently simple to provide analytical solutions in both steady and time-
dependent conditions. Notably, once the model’s entrainment coefficients λ1, µ, and σ are
known (e.g., by estimating their values from data obtained with flows at equilibrium), we
are able to describe the time evolution of the system [see equation (2.11)] when the flow
is far from equilibrium. Physically, this makes sense because there is no strong coupling
between the solid and water phases, as discussed earlier. Again, our description differs
profoundly from earlier models, in which the control of sediment transport by water is a
key assumption.

Experiments also suggest that the stochastic framework is well suited to intermediate
solid discharges. The deviations between theoretical predictions and data are more and
more significant with increasing slope and flow rate (i.e., Shields numbers). A current
limitation of our experimental facility is that we cannot perform experiments over times
of more than one minute, which forced us to select slopes and water flow rates with a
sufficient number of events per experiment. It would be interesting to pursue the exper-
imental investigation and comparison with the model at very low flow rates when a few
particles are moving and can be entrained by the stream. This would test the model in
more severe flow conditions.
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