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Abstract: On the basis of existing data along with rational arguments we propose an 
overview, in a conceptual diagram (solid fraction vs shear rate), of the dominant 
interaction type (Brownian, colloidal, hydrodynamic) at a mesoscopic scale within 
flows of concentrated suspensions or granular pastes. Different flow regimes identified 
by the values of dimensionless numbers are thus distinguished. The main 
characteristics of the rheological behaviour of suspensions within each regime are 
inferred. A specific domain corresponds to regimes for which dilatancy effects occur 
which may lead to frictional or collisional processes if an additional (normal) force is 
applied over the particles.  
 
 
1 Introduction 
 
 The main trends of the rheological behaviour of simple, dilute, suspensions and 
colloidal dispersions, and some model concentrated suspensions, are relatively well 
understood from a physical point of view [1]. Concentrated suspensions or granular 
pastes (a clearer definition of these systems will result of this work (see Section 8)), 
within which complex particles interact strongly giving rise to a viscosity much higher 
than the viscosity of the (interstitial) suspending medium, have received less attention 
from physicists, probably because of the apparent higher complexity of the field.  
Nevertheless the flows of such systems are important in industry at the different stages 
of design, preparation, production or use of various materials such as fresh concrete, 
cement or mortar, herbicides, drilling muds, foodstuffs, pharmaceutical and cosmetic 
pastes, inks, paints, etc. Flows of natural materials such as lavas, debris flows, 
landslides, avalanches, etc are also concerned. Hinch [2] has proposed an interesting 
overview of practical processes in which particulate systems are involved along with 
an attempt of unification of the corresponding physical phenomena. 
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 The rheological behaviour of concentrated suspensions and granular pastes has been 
dealt with mainly in three, apparently distinct fields which consider different types of 
materials under various conditions: (a) Rheology of (fluid) suspensions; (b) Physics of 
granular matter; (c) Soil mechanics. These fields often ignored one another, but it is 
one of the objectives of our work to show that they might reconciliate or overlap in 
some cases. Here we are mainly concerned with one-phase flows for which, within a 
representative volume, the average particle velocity is equal to the velocity of the 
surrounding fluid, but possible two-phase effects might occur due to short, local, 
particle migration, dilatancy, and so on.  
 
 The first field (a) has been developed by physicists somehow extrapolating the 
approach of Einstein [3] concerning dilute suspensions of hard spheres to concentrated 
systems. Thus the viscosity of such systems is related to the viscosity of the interstitial 
fluid ( 0µ ), the solid volume fraction (φ ) and the maximum packing fraction ( )mφ  
through various formulae, going from models assuming only hydrodynamic effects [4] 
to models attempting to include colloidal interactions and Brownian motions at 
different levels by using a varying maximum packing fraction [5] or an effective 
volume fraction [6]. More recently some authors also attempted to predict the shear-
thinning trend, i.e. apparent viscosity decrease with shear intensity, or the yield stress 
of concentrated suspensions through mesostructural approaches using fractal concepts 
[7] and transient network modeling originally developed for polymer dynamics [8]. In 
practice the Bingham model for which the stress is the sum of a yielding term ( cτ ) and 
a Newtonian-like term has most often been used in literature in the aim of flow 
modelling or as the type of behaviour that some theoretical approach should predict. 
However it is now admitted that this model lacks physical sense and, contrary to a 
Herschel-Bulkley model ( p

c qτ τ γ= + �  where γ�  is the shear rate,  and q p  are fluid 
parameters), it is uncapable of representing data within a shear rate range of several 
decades [9]. In addition, these materials are often viscoelastic and thixotropic (the 
viscosity varies with flow time) [10, 11]. Finally the existing theories remain far from 
being able to predict all the various and complex aspects of rheological properties of 
concentrated suspensions. In addition, it is worth noting that concentrated suspensions 
and granular pastes are precisely the most difficult systems to study with rheometers. 
Indeed various disturbing effects may develop during tests, such as wall slip (the most 
important effect), fracture, sedimentation, migration, evaporation, edge effects, etc. 
Some of these perturbating effects originate in the specific internal structure of the 
suspensions. This may lead to serious misinterpretation of rheometrical data [12] since 
in that case this is not the theoretical volume of homogeneous, constant material which 
is sheared.  
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 Concentrated systems have also been tackled by physicists within the framework of 
the study of granular systems (b) which have received a wide attention in recent years 
[13]. For the prediction of the mechanical properties of flowing granular assemblies, 
mainly the kinetic theory and numerical models have been used [14] with only partial 
success. In particular these models remain unable to predict the various properties of 
dry granular systems in a wide range of conditions [15]. Moreover they cannot be used 
for modelling slow or moderate flows of granular pastes yet. 
  
 The last field (c) in which such systems have been studied is soil mechanics. Here 
the constitutive equation is generally inferred using phenomenological relations 
concerning plastic dissipation and the so-called flow rule, which enables to relate a 
strain increment to a stress increment. The most common theory is the so-called Cam-
Clay model [16] which is used to describe the elastoplastic hardening behaviour up to 
the failure. Alternative models, but always based on plasticity potential and 
incremental formulation, have been developed, sometimes using a more refined 
framework (such as Cosserat media) [17]. In contrast with fields (a) or (b) and contrary 
to metal plasticity, the domain (c) suffers from the absence of a physical interpretation 
(at the particle scale) of the plasticity mechanisms [18]. We can however quote some 
efforts, which have been recently expended to try to explain the plastic behaviour of 
granular assemblies using homogenization techniques [19]. The lack of physical sense 
is obvious in many parameters used for identifying soil features. For instance, the so-
called Atterberg limits (giving the water content of clay materials respectively for the 
plastic failure and flow beginning) are arbitrarily defined by an experimental protocol.  
  
 Here we essentially intend to provide, from rational arguments, a simplified, 
conceptual diagram of predominant interactions within flowing concentrated 
suspensions (mainly under simple shear) as a function of shear rate and solid fraction 
(Fig. 1). As soon as one knows the appropriate dimensionless numbers governing the 
transition between the different regimes it is easy to draw similar diagrams using other 
variables such as particle radius or aspect ratio, ionic strength, external (normal) force, 
etc. The present scale ( ,φ γ� ) is used for the presentation of results because it seems the 
most useful in practice: it contains two parameters providing rapid, basic information 
concerning the density of the suspension and the flow intensity. In this diagram we 
assume that all other suspension parameters, such as ionic strength, particle diameter 
and shape, flow geometry, temperature, friction coefficient, viscosity of the interstitial 
fluid, fluid and particle density, external force and boundary conditions, are constant. 
For example, for large grains, the curves corresponding to the transition from the 
regime (A) or (C) towards the regime (B) would be displaced towards infinitely small 
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shear rates, which means that under most conditions hydrodynamic effects prevail. 
Also remark that the transition curves which have been drawn do not correspond to an 
exact limit between two regimes but simply point out a region around which it can be 
expected that the type of predominant interactions progressively changes. Since this is 
a conceptual diagram we did not try to draw precisely the curves for a given set of 
parameters but we represented all the main trends of these curves (in terms of slope) as 
appears from the viscosity and yield stress functions that we used. 
 
 Our intention is not to provide a complete frame for modelling the rheological 
behaviour of the various systems under different conditions. This indeed requires to 
take into account the specific form of interactions at a mesoscopic scale and may give 
rise to particular macroscopic properties of the suspension [8, 11, 20]. It is expected 
that a clearer distinction of significant interactions in different regimes constitutes a 
necessary first stage in order to better understand these systems. Since it would take a 
lot of space describing all existing works and synthetizing their results without losing 
ourselves in details, we shall often adopt a global position. Nevertheless we think that 
such an analysis could provide a useful overview and might foster the understanding in 
physical terms, of the relative situation of the different fields above cited with regards 
to concentrated suspensions.  
 
 In order to establish the diagram of predominance, we successively review the main 
types of interactions within a suspension of approximately monodisperse particles: 
Brownian effects, colloidal forces, viscous forces and contacts (lubrication, friction, 
collision). We also provide some elements concerning the typical rheological 
behaviour of suspensions in each regime. Since we aim at obtaining a rough overview 
of possible behaviour and interaction types, we shall not detail the possible, and more 
or less understood, specific behaviour of some model systems (in particular uniform 
glass bead suspensions) [21]. Then we analyse the possible mechanical behaviour of 
concentrated suspensions of polydisperse particles, i.e. a suspension of non-colloidal 
particles in a colloidal suspension.  
 
 
2 Generalities 
 
 We first consider mixtures of a Newtonian fluid with neutrally buoyant, solid 
particles whose size is larger than 1 nm. We assume that from a colloidal point of view 
the suspension is stable. From a practical point of view, this mainly means that 
repulsive forces prevail if particles are colloidal and that attractive forces remain 
negligible if particles are non-colloidal. Remark that in the following we shall often 
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use, may be improperly, the word colloidal to refer to any situation in which 
intermolecular or surface forces are important. Here we intend to present a general 
classification which might concern various systems such as model systems (e.g. 
polystyrene lattices) as well as rather complex systems (e.g. clay suspensions, fresh 
concrete, etc.). As a consequence we shall not define repulsive and attractive forces in 
more details. In addition we shall neither consider a specific particle shape nor assume 
a specific arrangement of the particles. We shall simply use two parameters to describe 
the geometrical structure: r  a characteristic length of the solid particles defined as the 
cubic root of the mean particle volume and φ  the local, solid, volume fraction in a 
representative volume. From these parameters, it is possible to define b , a 
characteristic, mean distance between the two centers of neighbouring particles, as 

( ) 1/3
mr φ φ − . Clearly this simplified description only intends to present a unified view 

but other types of variations of b  may be found depending on the specific structure of 
the suspension under study [22]. 
 
 
3 Equilibrium structure and yield stress in colloidal systems 
 
 We shall start by analyzing colloidal systems, simply considering suspensions of 
large particles as a limiting case, i.e. with negligible colloidal forces but with possible, 
significant, direct contacts. Each particle is submitted to various forces, the largest of 
them under usual conditions resulting from Van der Waals attraction, electrostatic 
forces, forces due to soluble polymers, Brownian effects, viscous forces and inertia 
effects [1]. These two last effects are negligible for sufficiently slow flows. We first 
consider interactions between particles under such conditions and we suggest the 
following simplified, general scheme for the particle interactions.  
 
 At a given time a particle is surrounded by other particles each of them interacting 
with it to a various extent via colloidal interactions. Thus, we can consider the 
potential energy ( Φ ) of the particle as a function of the position of the surrounding 
particles. For a particle, there exists a (instantaneous) position related to a minimum in 
potential energy [23], which should be situated more or less at an equal distance from 
the centers of neighbouring particles. However the particle needs a certain time to 
reach this position when it has been initially displaced. Thus the position of the particle 
relatively to its instantaneous minimum of energy depends on the history of its motion, 
and thus on flow history. Moreover Brownian motions of all particles constantly 
induce fluctuations of this equilibrium position in time. The particle can reach an 
equilibrium position only when the suspension has been left at rest during an infinite 
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time. As a consequence, it is useful to refer to a mean potential minimum (in time and 
space), to which corresponds an approximate, average energy barrier ( 0Φ ) to 
overcome when extracting (extremely slowly) a particle from its environment (but 
keeping it in the fluid), after an infinite time of rest of the suspension. Taking above 
remarks into account it must be kept in mind that the potential energy of each particle, 
resulting from its interactions with other particles can seriously deviate from this 
equilibrium value, and in particular can be much larger during a rapid flow, since 
particles do not have time to go back to an instantaneous, local position of minimum 
energy. [Remark that in that case the potential barrier to extract the particle is smaller.] 
This potential energy obviously depends on the characteristics of the interactions and 
interparticle arrangement and it might be expressed in terms of ionic strength, Debye 
length, solid fraction, etc, as for simple systems [1]. This scheme has some similarities 
with the initial scheme of Ogawa et al. [24] who suggested to treat suspensions of 
charged, stabilized, colloidal particles by applying Eyring's transition state theory.  
 
 If the interaction energy between particles at a distance of the order of the mean 
separating distance between their surfaces ( h b r= − ) is negligible, the particles are 
free to move within the suspending medium as long as they do not approach too close 
to each other, the suspension if thus apparently Newtonian. On the contrary, if this 
energy is significant, particle cannot easily move away from each other. In that case 
the suspension should clearly exhibit a yield stress, since a flow can be obtained only if 
a finite energy is provided to the system, which should make it possible to extract each 
particle from its instantaneous, local potential well reached after an infinite time of 
rest, even extremely slowly. Typically such a phenomenon has been observed with 
suspensions of charged spheres when the Debye length becomes of the order of the 
separating distance between particles [1]. In the following we provide some elements 
in order to quantify these phenomena within the framework of our analysis of complex 
systems. 
 
  Roughly speaking, the colloidal interactions as described above are negligible 
compared to Brownian motion when rN  is much smaller than 1, with: 
 

0
rN

kT
Φ=            (1) 

 
where k  is the Boltzmann constant and T  the temperature. [In all the paper we shall 
drop the 1 2  factor in the average, thermal, kinetic energy.] In that case, the system 
never reaches a specific equilibrium structure since the particles, even situated close to 
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a local, instantaneous, equilibrium position, can be rapidly removed far away because 
of thermal agitation.  
 
 When rN  is much larger than 1, a given particle will have more difficulties to 
extract from its local position between other particles. Remark that this is less difficult 
if the particle is far from its equilibrium position, in particular just after an intense 
flow. On the contrary, at rest, one may expect that some forces will tend to draw it 
towards an equilibrium position. Thus as time goes on, the probability for a particle to 
get out of its potential well by self-diffusion decreases towards zero. As a consequence 
it may be expected that there exists a well-defined equilibrium structure after an 
infinite time of rest for which each particle is embedded within a particle network. 
This network must be broken in order to impose a homogeneous flow to the 
suspension, each particle being extracted from its equilibrium position. 
Macroscopically this corresponds to an apparent yield stress.  
 
 It is worth noticing that this scheme is valid only if the positions of equilibrium 
keep a local character even after a long time of rest. For suspensions with a marked 
thixotropy it is likely that slow collective rearrangements of the particles (due to 
Brownian and colloidal effects) occur at rest giving rise to a particular configuration of 
particles throughout the suspension. Within this arrangement particles are in positions 
of energy minimum which result from a collective arrangement. In that case  the 
energy barrier can be significantly larger than 0Φ . This effect is probably at the origin 
of the marked thixotropy of some of these systems (in particular the strength of the 
particle network increases with time of rest) and we assume that it can be associated to 
a characteristic time ( *

0T ). Within this framework the yield stress, as a unique 
suspension parameter, has a physical sense only if it is associated to the equilibrium 
structure reached after an infinite time of rest, which is in agreement with relevant 
experimental procedure recently developed for determining it [25]. In parallel the time 
( 0T ) is associated to the return of a particle towards its instantaneous, local, 
equilibrium position, under the action of colloidal forces and despite the viscous drag 
(see quantitative definition below). In the following, for the sake of simplicity, we 
assume that *

0T  is much larger than 0T  and ET , the characteristic time of flow, or that 
collective rearrangements have a negligible effect on yield stress level. Under these 
conditions thixotropic effects will always be neglected and the infinite time of rest will 
be a reference time equal to a few times 0T .  
 
 To sum up, for sufficiently slow flows, the curve rN =1 approximately corresponds 
to the transition between a regime (A) for which Brownian motions dominate, towards 
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a regime (C) for which colloidal interactions dominate and in that case the suspension 
clearly exhibits a yield stress associated to an equilibrium structure after a time of rest 
of reference. The transition curve is a horizontal line in our diagram since 0Φ  does not 
vary with shear rate (Fig.1). 
 
 For flocculated suspensions it has often been assumed that during shear, the 
network breaks in flocs, the size of which decreases while the supplied energy 
increases due to increasing viscous drag [26]. This scheme does not seem appropriate 
here since the energy is mainly transmitted via the interactions between particles. On 
the contrary, we assume that the energy required to deform the suspension of a critical 
value ( cγ ) at an infinitely small velocity is used to separately get out a certain number 
(which can be small) of particles from their potential well. Clearly this is an 
approximation since in fact the particles are not really moved far away from each other 
and the potential well result from mutual interactions. This scheme seems nevertheless 
in global agreement with recent experimental observations with foams and emulsions 
[27-28]. cγ  depends on the network structure but since it results from the 
rearrangement of some particles we can also assume that the induced deformation is 
directly linked to the number ( n ) by unit volume of irreversibly rearranged particles so 
that 3

c nbγ = . Under these conditions the energy dissipated by unit volume deduced 
from mean mesoscopic considerations can be equated to that deduced from 
macroscopic considerations ( 0 c cn τ γΦ = ) and we obtain: 
 

3
0c bτ −≈ Φ            (2) 

 
 Equation (2) is quite useful since it provides a basic relationship between the 
(macroscopic) yield stress and the local energy barrier within the suspension. It is 
worth noting that the energy barrier ( 0Φ ) already contains the possible additional 
dependence on the concentration arising from long-range interactions, which, for 
simple systems, provide a dependence of cτ  on 2φ  [1]. This explains why in (2) the 
yield stress appears to be only proportional to the solid fraction (through 3b− ). 
However, for a given material, it is likely that taking into account the particle (fractal) 
arrangment of some complex systems along with the detailed characteristics of pair 
interaction would provide other types of dependence closer to those obtained from 
experiments or theory [29-30], i.e. 0( ) p

cτ φ φ∝ −  where p is associated to the fractal 
exponent of the structure and generally ranges from 2 to 3 and 0φ  is a critical solid 
fraction (percolation threshold). Exponential increase of cτ  with φ  have also been 
observed in literature far from the percolation thershold [31]. When 0 ( )φΦ  is known, 
(1) makes it possible to determine the approximate, critical solid fraction ( 0φ ) beyond 
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which colloidal interactions are significant, simply assuming that 1rN ≈  in that case. In 
practice, this corresponds to a situation beyond which the suspension exhibits a yield 
stress. When thixotropic effects are neglected the yield stress appearance beyond a 
critical solid fraction (or a critical ionic strength or pH) is reminiscent of glass 
transition. Indeed here, as solid fraction is increased, particles become more or less 
encaged though still fluctuating around their local equilibrium position. However the 
analogy is not complete because of the possible long time restructuration of the 
suspension at rest which could correspond to a long-range ordering. 
 
 
4 Hydrodynamic vs Brownian effects 
 
 The viscous force acting over the particle for some motion through a Newtonian 
fluid can be expressed as 0K Vµ− , where V  is the relative velocity between the particle 
and a representative volume of fluid around it and K  a coefficient which depends on 
the shape and size of the particle and on the orientation of the particle. For a sphere, K  
is equal to 3 rπ  (Stokes equation). For a disk of diameter w , K wπ  ranges from 1.7 to 
2.6 depending on its orientation relatively to the direction of particle motion. Other 
expressions can be proposed for rods or ellipsoids [32]. In a suspension, each particle 
will in fact perturbate the velocity field at every other particle, a phenomenon which is 
not accounted for in the above expression. It has been shown that the viscosity of hard 
sphere suspensions can be correctly evaluated by simply considering that the particle 
are added progressively in a fluid of increasing viscosity as a result of previously 
added particles [33]. A mathematical rule for the relative viscosity ( 0µ µ ) results 
which makes it possible to determine the form of this function of the solid fraction 
(with an arbitrary parameter). The fundamental hypothesis behind this approach, which 
certainly fails at solid fractions close to mφ , is that, when a particle is added in a 
suspension, it does see around it a homogeneous fluid. For a particle embedded in a 
suspension and moving relatively to it, it can be suggested in analogy with the 
viscosity problem that, during its motion, the particle more or less sees around it a 
fluid, whose viscosity is that of the geometrically identical suspension of non-
Brownian, non-colloidal particles, of viscosity µ , so that the viscous force expresses: 
 

vF K Vµ=            (3) 
 
where V  is now the particle velocity relatively to a representative volume of 
suspension. For a very dilute suspension the usual expression is recovered. Obviously 
the expression (3) is approximate but contains the appropriate parameters and 
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variables. In particular it can be expected that the force is not exactly the same for a 
motion over a small distance, when the particle remains at some distance from 
neighbouring particles, and for a motion over a long distance, when it needs to move 
over other particles. This problem is similar to that encountered with self-diffusion 
within a suspension: the short and long time-scale self-diffusion coefficients differ 
[34]. In addition the force also depends on the motions of the neighbouring particles. 
In view of our simplified overview and considering that we shall deal with flow 
problems in which particles are locally constrained to move relatively to each other in 
various directions, it is sufficient to use a single average expression (3), which reflects 
the expected variations of the average, drag force as a function of main parameters for 
all types of relative motion of fluid and particles. 
 
 When a simple shear (of shear rate γ� ) is imposed to our sytem, there is a finite, 
average, relative motion of particles, so that viscous effects can become significant. 
We consider that Brownian effects have a significant influence on viscosity when they 
are capable to move a particle of a distance of the order of the interparticle separation 
within the characteristic flow duration. In the case 1rN << , this will occur when the 
ratio (Péclet number, eP ) of the hydrodynamic dissipations ( vF b ) along a path of 
length b  at the velocity V bγ= � , to the average, thermal, kinetic energy ( kT ) is much 
larger than 1, with: 
 

2

e
K bP

kT
µ γ=

�            (4) 

 
In that case, one obtains the well-known shear-thinning effect for hard sphere 
suspensions resulting from the predominance of Brownian effects and consequently 
larger energy dissipations at low shear rates, and predominance of mean hydrodynamic 
effects at higher shear rates [1, 33]. The suspension can be considered as Newtonian 
both at low and high shear rates but with two different viscosities.  Remark that the 
Péclet number is also the ratio of a characteristic time ( 2

bT K b kTµ= ) of diffusion due 
to Brownian motion to the characteristic time of flow ( 1hT γ= � ). The curve 1eP ≈  thus 
corresponds to the transition between a regime (A) for which Brownian effects 
dominate towards a regime (B) for which mean hydrodynamic effects dominate. In the 
diagram (Fig.1) we assume that the suspension viscosity for negligible colloidal 
interactions is given by the equation [33]: 
 

( )5 2

0 1
m

m

φ
φµ µ
φ

−
� �

= −� �
� �

         (5) 
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which has been proved to rather correctly represent existing data and relies on the 
rational, theoretical, approach discussed above. Equation (5) predicts that the viscosity 
tends towards infinity when mφ φ→  which is not realistic from a physical point of 
view. In fact, beyond a critical value of φ  (such that mφ φ−  is finite), colloidal 
interactions (see Section 5) or contacts (see Section 6) may become predominant. 
Remark that the Péclet number is usually written with 2r  instead of 2b , which is 
formally similar, and even gives close values for moderately concentrated suspensions. 
However the present form and the related demonstration seem more general and might 
make it possible to superimpose all curves for different particle radii and solid 
fractions on a single master curve in a ( 0 , ePµ µ ) diagram.  
 
 Now we suggest a physical scheme which makes it possible to explain in a more 
straightforward way the variations of the viscosity with shear rate. It leads to results 
similar to those obtained from dimensional analysis but provides physical sense to 
these results. We shall repeat such an approach for each transition considered in this 
paper. The relative viscosity of the suspension ( 0η µ µ= ) at a given time is the result 
of the competition between diffusion processes due to Brownian motion and 
convection processes due to the macroscopic flow. As a consequence we can define a 
state of structure ( λ ) of the suspension as an instantaneous, average amount of 
diffusing particles. The rheological behaviour of the suspension depends on this 
amount and we have ( )η η λ= . At leading order we can write the rate of change of λ  
as the difference between the number of particles tending to diffuse by unit of time and 
the number of particles tending to be convected by flow by unit of time. The first term 
is proportional to a number ( F b ) of "available" particles for diffusion and to the rate 
of diffusion ( bb T ). The second term is proportional to the number ( /G b ) of 
"available" particles for convection and to the rate of convection ( hb T ) so that we 
obtain: 
 
d ( ) ( )
d b h

F G
t T T
λ λ λ= −           (6) 

 
In steady state we have d d 0tλ =  so that (6) reduces to: 
 

b

h

TH
T

λ
� �

= � �
� �

           (7) 

 
from which we deduce that the steady state viscosity only depends on the Péclet 
number: 
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( )ef Pη =  with 0   0    when and whene ef P f Pη η∞→ → → → ∞    (8) 

 
 
5 Hydrodynamic effects vs colloidal interactions 
 
 Consider the flow of a suspension in the case 1rN >> . In practice, for yield stress 
fluids, the yielding behaviour basically takes the form of a flow curve (shear stress vs 
shear rate in a steady state) tending to a finite value at low shear rates. At high shear 
rates, for suspensions, shear stress is proportional to shear rate, indicating that a 
Newtonian behaviour results from the predominance of hydrodynamic dissipations, i.e. 
energy dissipation due to the flow of the interstitial fluid, as in the case of moderately 
concentrated hard sphere suspensions at low or high shear rates. On the basis of this 
observation it appears possible to estimate the importance of colloidal interactions 
compared to hydrodynamic effects from the value of the following dimensionless 
number [30-31]: 
 

*

c

µγ
τ

Γ =
�            (9) 

 
Indeed *Γ  is the ratio of hydrodynamic dissipations within the equivalent suspension 
of non-colloidal particles to the suspension yield stress, which represents the main 
rheological effect of colloidal interactions as considered here. 
 
 It is possible to give this number a more straightforward physical sense by simply 
remarking that the energy required to move a particle of b  at a velocity V bγ= �  
(relative velocity of adjacent particle layers) from its local potential well, is the sum of 
the approximate, hydrodynamic dissipation ( vF b ) and the energy barrier ( 0Φ ) which 
must be overcome. Thus colloidal interactions are predominant during flow when the 
following dimensionless number is smaller than 1: 
 

2
*

0

K b K
b

µγΓ = = Γ
Φ

          (10) 

 
which is an equivalent form of *Γ . Remark that Γ  is also the ratio of the characteristic 
time ( cT ) (see Section 3) for a particle to move of a distance approximately equal to b  
driven by colloidal forces though slowed down by hydrodynamic forces, to the 
characteristic time of flow ( hT ), with: 
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2

0
c

c

K b KT
b

µ µ
τ

= =
Φ

          (11) 

 
 Experimental works with clay-water suspensions [31], coal slurries [12] and silica 
particles in silicone oil [30], showed that the simple shear behaviour of suspensions for 
a wide range of concentrations can be superimposed on a master curve by simply 
scaling the shear stress by cτ  and the shear rate by cτ µ . Thus it was shown that 
colloidal interactions become negligible while hydrodynamic effects progressively 
become predominant when *Γ  overcomes and becomes much greater than 1. Other 
authors presented experimental data which could be aligned in a similar way [35]. 
Similar master curves were obtained [36] when scaling the shear stress with 'G  and 
the shear rate with 'G µ , where 'G  is the elastic modulus, which is more or less 
proportional to cτ . It has also been shown that for electrorheological fluids an 
analogous master curve can be obtained if one uses a similar dimensionless number 
[37]: the Mason number, 2

L Eµγ ε� , where Lε  is the liquid permittivity and E  the 
applied electric field, which has also been intrepreted as the ratio of the characteristic 
time for two particles to come into contact under the action of the electrical field 
( 2

0Eµ ε ) alone and the characteristic time of flow. The physical explanation of all 
these results appears clearly here, since from (11) the characteristic time of the 
material used in these works, cµ τ , mainly increases like cT  for increasing solid 
fraction. Indeed, as a first approximation, K b , which is simply proportional to 1/3φ  
can be considered as constant. Thus we are dealing with a transition from colloidal to 
hydrodynamic effects, which is equivalent to the transition from Brownian to 
hydrodynamic effects which clearly appears by the flow curve superimposition [1] 
when the Péclet number is used to plot the data. Similarly the transition is here 
governed by the ratio of two characteristic times ( cT  and hT ).  
 
 As a consequence, as for the transition between the Brownian and the 
hydrodynamic regimes, we can consider that the instantaneous behaviour of the 
suspension results from the competition between a tendency of the particles to drop 
into an instantaneous, local equilibrium position at a rate 1 cT  and the convection due 
to flow at a rate (1 hT ). Thus we can define a parameter λ  which is an average (in 
space) instantaneous state of structure, and we can write for ( , )tλ Γ  an equation similar 
to (6) from which it results that a dimensionless shear stress ( cτ τΤ =  for example) 
may be expressed as a function of  Γ  alone: 
 

( )c

h

Tf f
T

� �
Τ = = Γ� �

� �
 with 1f →  when 0Γ →  and f α→ Γ  when Γ → ∞   (12) 
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where α  is a factor depending on material characteristics.  
 
 The curve 1Γ ≈  thus approximately corresponds to the transition between the 
regime (C), for which colloidal interactions dominate, and the regime (B) (see Fig. 1). 
It is worth noticing that the corresponding curve and the curves 1rN =  and 1eP =  
intersect in a single point for which Brownian, hydrodynamic and colloidal effects 
more or less balance. In Fig.1, in order to be consistent with most experimental data 
and theoretical considerations, we assumed ( )n

c cτ φ φ∝ −  with 3n ≈ . For suspensions 
with colloidal interactions, the appearance of yield stress beyond a critical solid 
fraction is the equivalent of the yielding phenomenon occurring when reducing for 
example the ionic strength [38]. In that case, for model suspensions, the transition has 
been explained on the basis of a reduced volume fraction in (5) taking into account an 
effective volume of particles including around them a volume within which colloidal 
interactions are strong [1, 6]. 
 
 It is usually considered that suspensions of non-colloidal particles remain 
Newtonian even at high solid fraction but with ( )µ φ → ∞  when mφ φ→ . Under these 
conditions, we can take 0 0Φ = , which effectively indicates that hydrodynamic effects 
should be dominant as long as Brownian effects are negligible. In that case, the regime 
(C) in Fig.1 disappears. However even for dispersions of hard spheres assumed to be 
as such, slight colloidal effects might induce a yield stress at solid fraction close to mφ  
[39]. For suspensions of larger particles, possible slight colloidal interactions can 
hardly affect the rheological behaviour which mainly depends on hydrodynamic effects 
and possible direct contacts (see below).   
 
 
6 Contacts 
 
 A direct contact occurs when two particles touch each other. It is in fact rather 
difficult to define the exact form that such a process should take. Indeed, because of 
possible slight colloidal interactions, particle roughness, and hydrodynamic effects, a 
"true" direct contact can hardly occur over a large surface. Contact mechanics 
generally involve various, complicated processes, such as elastoplastic deformation of 
junctions, adhesion, film lubrication [40]. A possible way of defining direct contact 
without dwelling on details is to consider it from its effects on particle dynamics rather 
than through its mechanisms. Thereby it is very usual to distinguish between 
collisional (brief-duration) and frictional (sustained) contacts.  This definition, which 
makes it possible to avoid considering in details the physics of contacts, is quite 
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appropriate in our case since, in order to determine the predominant interactions from a 
rheological point of view, we mainly need to quantify them. Thus we shall retain that, 
basically for a sliding frictional motion between two particles, the tangential force is 
proportional to the applied, normal force, and that for a collision there is a momentum 
transfer proportional to the relative velocity of particles (for identical particles).  
 
 
6.1 Squeezing effects 
 
 Let us assume that colloidal interactions are negligible. In that case a direct contact 
requires to overcome the viscous force resulting from the flow between particles. At 
small separating distance ( h r<< ) the most significant force is the normal force due to 
fluid squeezing [41], which in the case of spheres, expresses at leading order as: 
 

2

0
3F V
8

r
h

πµ � �
= − � �

� �
          (13) 

 
where V  is the relative velocity of particles in the direction of the particle centers. 
Clearly this expression is not valid for extremely small separating distance since 
F → ∞  when 0h → , which would preclude any direct contact. In fact, there exists a 

minimum distance below which the expression holds no longer. This may originate 
from various mechanisms, such as an elastohydrodynamic interplay [42]�,�� the 
increase in viscosity [43], the shortcoming of continuum hypothesis [44]. As a first 
approximation, we shall only take the effect of particle roughness into account. As a 
consequence we consider that a direct contact occurs when h  is of the order of the 
particle roughness (ε ) since at this separating distance secondary flows within some 
channels formed by surface irregularities are significant, which tends to considerably 
slow down the rate of increase of F . Taking h ε=  in (13) thus provides an estimate 

for the maximum force due to fluid squeezing. This assumption is in agreement with 
the experimental results of Smart and Leighton [45]. This approach might not be valid 
for particles which are non planar or spherical at short distance, for which it could be 
considered that there are more than one scale of surface irregularities, but here we shall 
neglect this problem. Considering that the energy dissipated through fluid squeezing 
becomes predominant at solid fractions close to mφ , Frankel and Acrivos and other 
authors [41, 46] computed the suspension viscosity but obtained various expressions. 
In addition some authors with slightly different hypotheses obtained other expressions 
[47]. This is due to the fact that the result a great deal depends on the assumed, 
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instantaneous, particle configuration [48]. All theories at least predict the singular 
behaviour of viscosity when mφ φ→ .  
 
 During flow a direct contact between two particles cannot easily occur due to the 
large repulsive force developed as they approach each other. More precisely, in the 
absence of an external action on particles, during simple shear such a process cannot 
occur since the repulsive force (at least 3

0 r hµ γ� ) is much larger that the force resulting 
from flow (of the order of 2

0 rµ γ� ) when h r<< . In that case two particles will remain 
lubricated by a thin fluid layer during their relative motion. This may be called a 
lubricated contact. If the particles are submitted to a sufficiently large external action 
such as pressure or gravity direct contacts can occur.  
 
 The predominance of contacts (either lubricated or direct) necessarily results from 
the existence of a considerable amount of contacts throughout the suspension so that 
we conclude that this situation can be associated with the existence of a continuous 
network of particles in contacts. Such mixtures will be referred to as granular 
suspensions. Since this phenomenon is associated with a percolation process it occurs 
when the solid fraction is larger than a critical one ( cφ ). Current knowledge in this 
field do not make it possible to specify in what extent cφ  depends on flow and 
suspension characteristics. At least slight fluctuations are expected since the 
arrangement of the particle network can change under varying flow conditions. As a 
first approximation we shall assume that cφ  remains constant. Experimental and 
numerical results indicate that for dry uniform spheres cφ  should be situated between 
0.5 and 0.55 [49]. In the following we shall examine successively the behaviour of the 
suspension when each of the three types of contacts (lubrication, collision, friction) 
dominate and establish criteria for the transition between these regimes. 
 
 
6.2 Lubricational regime 
 
 We emphasize that, if fluid squeezing effects are predominant at high solid 
fractions, the mean, shear-induced, relative motion of particle layers should also 
develop normal forces. Indeed a particle in motion can no longer travel far away from 
neighbouring particles but must more or less slide at a small distance between the 
particles of the surrounding layers (above and below it). As a consequence the 
suspension behaviour is no longer Newtonian. Indeed the particle configuration is no 
longer isotropic and constant, crowding effects inducing some organization or disorder 
depending on shear rate, allowing relative motion and probably tending to minimize 
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energy dissipation [50]. An exemplary consequence of this phenomenon is the shear-
thickening effect for uniform hard sphere suspensions at a critical solid fraction which 
has been attributed to an order-disorder transition beyond a critical shear rate [51] or to 
cluster formation [52]. Since this phenomenon is intimately related to a crowding 
effect which tends to dilate the granular phase [53], it has been referred to as dilatancy 
[54]. Dilatancy is known to occur with granular systems within which friction 
dominates or for rapid dry granular flows [55]. Dilatancy in fact belongs to a wider 
range of phenomena, which could be referred to as steric effects and correspond to the 
evolutions of particle configuration under shear resulting from mutual obstruction of 
particles.  
 
 We deduce that there should exist a transition between the regime (B) and a 
lubricational regime for which hydrodynamic effects are predominant but dilatancy 
effects also occur, possibly giving rise to non-Newtonian effects, approximately 
beyond a critical solid fraction ( cφ ). If this effect is considered to be directly related to 
shear-thickening, various data can be found in literature concerning this critical value 
[21, 49]. It is worth noticing that, as soon as dilatancy occurs, the real solid fraction 
depends on flow and boundary conditions and can be smaller than the initial solid 
fraction. As a consequence the solid fraction in the corresponding domain in Fig.1 
must only be considered as a solid fraction of reference of the suspension. Moreover 
the associated rheological behaviour strongly depends on the instantaneous particle 
configuration, which depends on flow history and boundary conditions. This 
lubricational regime occurs only at sufficiently large shear rates and for appropriate 
boundary conditions. In particular, we discuss below (Section 6.3) the transition from a 
frictional regime towards a lubricated regime for increasing shear rate. 
 
 
6.3 Lubricational vs frictional effects 
 
 When the suspension is free to dilate (which depends on boundary conditions and 
network permeability), the repulsive forces increases with shear rate so that direct 
contacts remain negligible. When a given additional (normal) force is applied to the 
particles (for example due to gravity effects, which is in fact often the case in practice 
with granular systems), direct contacts can occur at low shear rates because the 
repulsive forces tend towards zero. As shear rate increases, the repulsive forces due to 
fluid squeezing may become sufficiently larger than the additional force and preclude 
direct contacts. This phenomenon again occurs only under appropriate boundary 
conditions and is for example at the origin of the so-called resuspension of granular 
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suspensions [56-57]. In that case initially settled grains are found to progressively 
dispersed through the suspension under shear. 
 
 This transition from a frictional to a viscous regime has also been observed for 
roughly homogeneous granular suspensions [58] under gravity. Experiments have been 
carried out in a vane rheometer, with suspension of glass beads in glycerol, air or water 
(initially mφ φ≈  but the system is free to slightly dilate). At low rotation velocities the 
rheological behaviour was governed by friction. Indeed the measured shear stress was 
proportional to the suspension height in the bob and thus proportional to the mean 
normal stress due to gravity, and did not vary with the interstitial fluid or velocity. 
When the rotation velocity increases, the repulsive force increases and the gravity 
force, which acts vertically but transmits forces transversally through grain contacts, 
was now unable to maintain particles in direct frictional contact. This appeared from 
the fact that the suspension behaves as a Newtonian fluid within the range of largest 
shear rates. In addition, for a given particle size, all curves can be plotted along a 
master curve in a diagram (ratio of wall shear stress to fluid height - ratio of 
(repulsive) viscous force to normal force (C )). The transition between the two regimes 
effectively occurs around 1C = . However the data for another particle size, though 
showing the same kind of transition, do not fall on this master curve [58]. This might 
reflect the well-known difficulty to deal with the mechanical behaviour of granular 
materials because the strength of the percolating network of direct contacts can 
strongly vary in particular with the ratio of particle size to material length. Neglecting 
this problem the generalized expression for the repulsive viscous force to the normal 
force ratio (that we shall write eL ) with any normal stress ( N ), also provides the 
dimensionless number governing the transition from a frictional (E) to a lubricational 
regime (F) (Fig.1) at high solid fractions under free dilatancy conditions, which is 
similar to the parameter governing resuspension in Leighton's theory [56]: 
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µ γ

ε
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�            (14) 

 
It is easy to show that eL  is also proportional to the ratio of a characteristic time ( lT ) 
for the particle to enter in direct contact with another particle when moving through 
the fluid under the action of the external normal stress, with: 
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to the characteristic time of flow ( hT ). As a consequence the scheme used for the other 
transitions can once again be applied in that case. Now the internal state of the 
suspension more or less corresponds to the amount of particles separated by fluid film 
at a given time. Describing the evolutions of this state can be made with the help of an 
equation similar to (6) which finally provides the following result for the 
dimensionless shear stress ( NτΤ = ): 
 

( )ef LΤ =  with .f Cst→  when 0eL →  and ef L∝  when eL → ∞        (16) 
 
It should be kept in mind that the rheological behaviour indicated by this approach is 
obviously approximate because of the lack of knowledge already mentioned in this 
field. For example we simply retained Coulombian and Newtonian behaviour types for 
the extreme regimes in (16). 
 
 
6.4 Hydrodynamic or lubricational vs collisional effects 
 
Bagnold [59] suggested that collisions between particles could be predominant for 
sufficiently large shear rates and/or solid fractions, giving rise to the so-called inertia 
regime. In fact the probability of occurrence of a collision seems in general extremely 
small except for high solid fractions or low viscous interstitial fluid. Indeed the 
repulsive viscous force should considerably damp particle inertia. We can evaluate this 
effect from the ratio ( aB , which is a modified Bagnold's number) of particle inertia 
( 2 2bργ� ) to the repulsive force (proportional to 2

0 r bµ γ ε� ): 
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bB ργ ε

µ
=

�            (17) 

 
Taking a reasonable value of 10 mε = µ  for the particles, we find that Bagnold's data 
correspond to aB  in the range [0.014; 6] for which it is not obvious that collisions 
effects could have been really predominant. However collisions can occur under other 
conditions. Indeed, for a dry powder of particles of 1 mm with a roughness of 1 µm 
sheared at a rate of 100 1s− , one obtains aB  of the order of 100. On the contrary, for a 
suspension of sand ( 1 mm ; 10 m r ε≈ ≈ µ ) in water, 10aB =  when -1400 sγ ≈�  which is a 
rather intense shear rate. This means in particular that collisions may occur within 
certain powder flows but seldom occur within flows of most current granular pastes 
under usual flow conditions, which, as a consequence, cannot be modelled with the 
help of Bagnold's theory (see below).  
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 We emphasize that the value of aB  only makes it possible to determine whether 
collisions occur or not under free dilatancy conditions and without additional forces. In 
particular, even if aB  is large it is not possible to conclude that collisions are 
predominant. On the contrary, if aB  is small, collisions may nevertheless occur if an 
additional force is applied on the particles or if dilatancy is not permitted. Moreover, in 
some cases, in particular for dry granular flows under gravity, we can expect that there 
is a direct transition from the frictional to the collisional regime.  
 
 Bagnold [59] also proposed an original approach to estimate the shear stress within 
a flowing suspension when collisions are predominant. It consists in considering that 
the collisional rate is proportional to the shear rate and that the momentum transfer is 
proportional to the local relative velocity which is also proportional to γ� . It results that 

2τ γ∝ �  and that normal forces develop proportionally to the shear stress as a result of 
similar momentum transfer processes in the direction perpendicular to shear plane. 
Bagnold's data were in agreement with this theory but, since this author used rather 
viscous interstitial fluids, we remark that this might also result from normal forces due 
to the fluid squeezing effects mentioned above. In addition it is worth noticing that if 
one uses the semi-empirical expression (5) for computing the viscosity of the 
suspensions used by Bagnold, one finds Reynolds numbers (eq. 20) larger than 1000 
for the data supposed to correspond to the so-called inertia regime. We can conclude 
that, in the inertia regime of Bagnold macroscopic turbulence was fully developed, as 
mentioned by the Author himself. This constitutes a crucial difference with most 
conditions of subsequent use of Bagnold's model by other authors in various fields 
(natural flows, powders, etc). Various other experiments were carried out with wet or 
dry coarse particles flowing in a channel or in an annular shear cell [60-62]. On the 
whole, the corresponding results when aB >>1 seem to confirm a square-dependence of 
the shear stress on the shear rate, but several reported phenomena are disquieting. For 
instance, Savage & Sayed [61] reported the occurrence of secondary flows or did not 
find the same stress when applying the same shear rate with different flow depths. 
Craig et al. [62] also showed the strong influence of boundary conditions on results. 
Bagnold's approach has also initiated the development of the kinetic theory for 
granular materials [63], which directly derives from the gas kinetic theory. In practice, 
as appears from existing data, the field of validity of these theories for suspensions 
seems nevertheless rather narrow since it in general requires a rather strong agitation 
of particles and a very low viscous, interstitial fluid.  
 
 
6.5 Synthesis 
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 Granular suspensions are characterized by the existence of a network of particles in 
contact. In that case steric effects (or dilatancy) occur, which may strongly affect the 
rheological behaviour of the suspension. As far as the rheological behaviour of these 
suspensions is concerned it is also necessary to take into account the influence of 
additional forces over the particles and specific boundary conditions (in particular 
concerning dilatancy). Under some conditions the shear is localized along a few 
particle layers or the sample fractures. When dilatancy is permitted and appropriate 
additional forces are applied the predominant contacts are successively of the 
frictional, lubricational and collisional types, as the shear rate increases. Considering 
the influence of additional parameters and the lack of knowledge concerning the 
transitions, in Fig. 1 we simply represent this domain in the form of a band comprised 
between cφ  and mφ , neglecting the possible, slight variations of cφ  with shear rate and 
other parameters. In practice, and typically when gravity effects are important, another 
problem occurs with flows within this domain. The extent of dilatancy, which depends 
on the applied normal force, decreases with the depth within the suspension. As a 
consequence flows of highly concentrated suspensions under gravity are usually more 
or less heterogeneous and do not a priori exhibit the behaviour types above presented 
and corresponding to homogeneous suspensions.  
 
 Leaving apart these problems we suggest the following, simplified scheme: beyond 

cφ  we are dealing with granular suspensions for which different flow regimes may be 
obtained depending on the relative values of two dimensionless numbers: 
 •  A frictional regime (E) for 1eL <<  and 1e aL B << ; 
 • A lubricational regime (F) for 1eL >>  and 1aB << ; 
  • A collisional regime (G) for 1e aL B >>  and 1aB >> . 
As a first approximation the suspension behaviour in these regimes can be represented 
with the help of a Coulomb model (E), Newton model (F) and Bagnold model (G) 
respectively. 
  
6.6 Fluid-solid coupling 
 
 Though it can bring some useful information concerning the origin of the 
behaviour of a granular suspension the two-phase character of suspension has not yet 
been taken into account. The force required to shear the suspension is related to the 
deformation of the grain network and to the varying pore pressure, i.e. the pressure 
within the interstitial fluid. In soils mechanics the importance of this phenomenon and 
its qualitative effects have been recognized for a long time [64]. The macroscopic 
effects of this physical process are highly dependent on the instantaneous particle 



 

22

configuration (loose or dense sample in soil mechanics) and boundary conditions 
(additional (normal) force applied and possibility of dilatancy (drained or undrained 
sample in soil mechanics)). [It has also been suggested that the role of rapid pore 
pressure fluctuations during the motion of certain wet granular masses could be crucial 
[65].]  
 
 From a more general point of view the extent of coupling between the solid and 
the liquid phases may be estimated by considering the Stokes number ( tS ) which is the 
ratio of the characteristic time ( 3

0RT r Kρ µ= ) of the motion of a particle submitted to 
viscous drag and inertia, to the characteristic time of flow of the suspension: 
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 When 1tS >> , the particle motion is not subjected to the interstitial fluid motion. 
Since in our case (granular suspensions) we hypothesized a large solid fraction this 
means that the solid phase governs the behaviour of the whole suspension.  If 

-31000 kg.mpρ ≈ , -11 sγ ≈�  and K r≈ , this occurs for a suspension of grains with a 

diameter larger than 1 mm in air or larger than 1 cm in water. In that case we are 
dealing with what is often referred to as granular flows.  
 
 When 1tS ≈ , the coupling between the two phases is weak. In that case the 
mixture may exhibit a two-phase behaviour since each phase is partially independent 
and dependent on the other phase.  
 
 When 1tS <<  particle motion is mainly dictated by that of the fluid phase. All 
happens as if the particles were a part of the fluid. This for example occurs for a 
suspension (other characteristics as above) of grains of diameter smaller than 1 µm  in 
air and smaller that 10 µm in water. It is worth noticing that the suspension behaviour 
can nevertheless still be dictated by the interactions between the solid particles. This 
material type corresponds to what is often referred to as granular pastes. In that case 
fluid flows through the porous medium formed by the grain network are extremely 
difficult because they induce very large pressure gradients. Indeed the Darcy's law 
predicts that the pressure gradient for the laminar, steady flow of a Newtonian fluid 
through a porous material at a mean velocity U  expresses as  0 0Up kµ∇ = − , where 0k  
is the permeability of the porous structure. It is instructive to recall that 2

0 12k d=  for 
a simple channel made of two parallel planes separated by a distance d . More 
generally it has been shown that the permeability of a porous material increases with 
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the size of pores. Thus, under fixed dilatancy effects, the induced pressure gradient 
decreases with the separating distance between particles, and increases with the solid 
fraction. In order to estimate 0k  for a bead pack one may use the empirical formula 
Kozeny-Carman 2 3 2

0 (1 ) 45k r φ φ= − . As a consequence, for a shear flow inducing a 
net velocity through the porous network, the dimensionless pressure gradient can also 
be written: 
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�           (19) 

 
This result demonstrates that the tendency of granular pastes to dilate is strongly 
counteracted by the difficulty of flow through the porosity, which tends to induce large 
pressure gradients. Thus it is probable that, as long as the particle network is 
sufficiently loose, flow induces local particle rearrangements instead of grain network 
dilatancy. When the solid fraction is larger than a critical value flow tends to induce 
dilatancy which would give rise to large pressure gradients. Then, for the material, a 
solution to minimize energy dissipation is to deform along specific surfaces or even (in 
stretch flow) to separate in two distinct parts. This might be the explanation of fracture 
in highly concentrated granular pastes. It has effectively been observed that beyond a 
critical solid fraction, highly concentrated suspensions of fine particle (pastes) fracture 
when submitted to shear [31, 66-67] after a critical deformation. In that case the 
fracture takes the form of a localization of deformation in a very thin material layer. 
Fracture also occurs for a paste stretched between two plates but in that case it takes 
the form of a separation of the sample in two parts [68]. As already mentioned these 
phenomena highly depend on boundary conditions. For example, in order to avoid 
fracturing, it is necessary to knead concentrated pastes such as modelling clay or 
pastry. During this operation one provides additional energy to favor or balance large 
pressure gradients due to local or macroscopic fluid transfers resulting from local 
dilatancy. Remark that the same type of energy is required to squeeze a paste in order 
to withdraw the interstitial fluid. This also makes it possible to propose some elements 
for a physical interpretation of the Atterberg limits [18]. The so-called liquidity limit is 
arbitrarily defined as the minimum water content for which flow under particular 
initial and boundary conditions (vibrations) leads to close a crack (of given size) made 
at the material surface, and should thus be related to a critical yield stress of the 
suspension. The so-called plasticity limit is defined as the maximum water content for 
which material rods (of given size) submitted to an elongation break, and could thus be 
related to a dilatancy criterion under particular normal stresses (pressure arising from 
the hands of the experimentator). 
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7 Turbulence 
 
 Usual inertia effects become predominant compared to hydrodynamic effects, 
giving rise to turbulent flow, when the Reynolds number ( eR ) is sufficiently large, 
with: 
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where L  is a characteristic length of the macroscopic flow over which the average (in 
time) velocity significantly varies. eR  is the ratio of inertia effects ( 2 2Lργ� ) to 
hydrodynamic dissipations ( µγ� ). Remark that the suspension viscosity and not the 
fluid viscosity must be used in (20). For non-Newtonian fluids (such as yield stress 
fluids) the correct dimensionless number can include additional material parameters 
but, though some theories and experiments already exist [69], the range of eR  for the 
transition towards turbulence has not been yet completely determined for complex 
fluids. As a first approximation it is sufficient to use in that case a generalized 
Reynolds number with the apparent viscosity (τ γ� ) instead of µ . It is worth noticing 
that, for suspensions, this approach relies on the assumption that there is a direct 
transition from the colloidal regime to the turbulent regime. When this is not the case 
the suspension in the hydrodynamic regime is Newtonian and the expression (20) is 
relevant. In addition, since turbulence is the result of an instability, its occurrence is 
conditioned by various factors such as the macroscopic characteristic length ( L ) of the 
flow, the roughness of boundaries, the form of the flow geometry, initial conditions, 
etc. As a consequence the range of eR  corresponding to the transition to turbulence 
varies in a wide extent with the system under consideration.  
 
 With a suspension, other inertia effects can be distinguished [70]. These are 
turbulence within the interstitial fluid and fluctuations of particle motions around mean 
motions. Quantifying each of these processes requires to use a dimensionless number 
which is the ratio of inertia resulting from the flow of fluid between neighbouring 
particles (or from a relative motion of two close particles) to hydrodynamic 
dissipations. This in fact yields a single dimensionless number as follows: 
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Though the range of e pR  for the transition towards the different corresponding regimes 

can be different, it is reasonable to consider that in general these effects occur more or 
less beyond the same critical conditions for a given system. Moreover the question 
remains open whether these inertia effects can occur independently of macroscopic 
turbulence. Indeed we have: 
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so that, in general, e pR , though formally similar to eR , is much smaller, which might 

mean that these effects should occur only when macroscopic turbulence occurs. In 
addition, at sufficiently large Reynolds number, boundary layers can detach from the 
particles leading to complex effects if they interlace with the slipstreams [71]. 
Considering our poor knowledge of this topic we used in Fig.1 only the generalized, 
macroscopic, Reynolds number given by (20) in order to position the transition 
between the regime (B) and the regime (D) for which either macroscopic or 
microscopic turbulence is significant.  
 
 
8 Synthesis and corresponding rheological trends 
 
 The present study makes it possible to define more clearly a concentrated 
suspension. We suggest that this simply corresponds to a suspension for which either 
colloidal interactions or contacts dominate (respectively 1Γ >  or cφ φ> ). Remark that 
this definition is related to a flow regime and not simply to suspension characteristics. 
Concentrated suspensions are thus obtained when particle interactions play a major 
role in the suspension behaviour. For some silica or clay suspensions this may occur 
for solid fractions as low as 0.1%. 
 
 Our diagram (Fig.1) makes it possible to have an overview of the possible 
rheological behaviour of a given suspension type. For a dilute suspension we have a 
shear-thinning behaviour when one increases the shear rate since Brownian motions 
dominate at low shear rates. Increasing sufficiently the shear rate leads to turbulent 
flow. For a concentrated colloidal suspension, i.e. for which colloidal interactions 
dominate at low shear rates, we are dealing with a yield stress fluid. In addition it is 
viscoelastic, because elasticity can provisionally be stored when particles only climb 
along their local potential well without getting out of it. It is thixotropic, because there 
are characteristic durations associated with the time for coming back to the bottom of 
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its local, provisional, potential well, and the time for the long-range particulate 
structure to rearrange. However viscoelasticity and thixotropy are not always apparent 
since they are associated with time scales which can be much smaller than flow time 
scale. As long as shear rate increases hydrodynamic effects play an increasing role and 
can become predominant. At this stage the suspension behaviour is that of the 
equivalent suspension of non-colloidal particles with the same shape. Then turbulence 
may occur at larger shear rates. For all these regimes the suspension behaviour may be 
defined from a local point of view. 
 
 The rheological behaviour of granular suspensions (for cφ φ> ) has been discussed 
in Section 6.5. This region correspond to regimes for which the solid network formed 
by particles in lubricated or direct contacts throughout the suspension plays a critical 
role. The mutual force between two neighbouring particles is then always of a 
repulsive type so that displacing one particle within the suspension requires large force 
making it possible to deform the whole network. As a consequence the suspension 
behaviour depends on the possible, additional, external force and boundary conditions. 
The behaviour of granular suspension has fundamentally a non-local character. They 
could be referred to as a "hard" suspension in opposition to the "soft" suspensions 
which are obtained in the other regions and for which the interstitial fluid always plays 
the critical role.  
 
 
 
Figure caption 
 
 
Figure 1: Conceptual classification of the rheophysical regimes of a suspension as a 
function of shear rate and solid fraction in a logarithmic scale. The other 
characteristics of the suspension are fixed and the limiting curves do not correspond to 
strict transitions (see text). 
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