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bÉcole Polytechnique Fédérale de Lausanne, Laboratoire d’Hydraulique
Environnementale, Ecublens, 1015 Lausanne, Switzerland

Abstract

This paper tests three conceptual avalanche-dynamics models by comparing their
predictions to 14 documented avalanches observed at the Lautaret Pass (France).
Three models were used: the Voellmy-like model, an extension of this model (referred
to as the generalized Voellmy-like model), and a new model deduced, referred to as
the modified Coulomb-like model. Compared to deterministic physically-based mod-
els, these models are not intended to describe the dynamical behavior of avalanches,
but to mimic their behavior by using nonlinear mathematical operators. Agreement
between model predictions and field data was uneven: the three models succeeded
in reproducing the run-out distance, but only two of them (generalized Voellmy and
Coulomb-like models) provided correct estimates of avalanche velocity.
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1 Introduction

In this paper a series of documented avalanches is used to fit conceptual
avalanche-dynamics models. This work is motivated by the two following
points:

• Rheological equations used so far in avalanche-dynamics models are spec-
ulative. The rheology of flowing snow include very complex processes, e.g.
the rheological properties may vary from one event to another because of
meteorological conditions; when the avalanche goes down, snow properties
can alter as a result of snow compression, snowball formation (increase in
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water content), air entrainment, etc.; neighboring paths can produce very
different avalanches because of the relief influence. This large variability in
snow properties can lead to thinking that the current avalanche-dynamics
models are not physically based, but instead should be considered as con-
ceptual models. This is consistent with the fact that their parameters are
never measured, but fitted. This is the idea that we will further explore here.
In a companion paper (Meunier and Ancey, 2004), we have developed a con-
ceptual model (this notion will be explained later) and shown its interest in
modeling extreme snow avalanches.

• Most avalanche-dynamics models introduce two friction parameters in the
rheological equation. These two parameters have been adjusted by using
field data; usually a single type of measurement (e.g. the run-out distance) is
available. Typical examples include the following ones: Schaerer (1974) used
the velocities in the part of the profile where a steady state was expected
to occur (for 47 measurements taken from 21 different paths). Bakkehøi
et al. (1980) used runout distances from 136 paths. Buser and Frutiger
(1980) used the runout distances of 10 extreme avalanches on 10 paths. All
these researchers wanted to determine two friction parameters, but they
could used a single type of measurement. They overcame this difficulty by
using ad hoc assumptions: Schaerer (1974) used a relationship between the
Coulombic friction coefficient µ and avalanche velocity; Buser and Frutiger
(1980) assumed that the friction parameters (µ, ξ) of the Voellmy model
are the same for all the events. Bakkehøi et al. (1980) did not solve the
problem and gave a practical range of the two parameters (µ, M/D), where
M is the mass of the avalanche and D is the drag coefficient. In contrast,
here we will consider a series of events for which both the velocity and run-
out distances were recorded. This makes it possible to adjust the friction
parameters more properly. Note that, except for the work done by Gubler
et al. (1986) and Gubler (1987), there are not many attempts to properly
adjust two-parameter avalanche-dynamics models.

This paper will attempt to fit three two-parameter models. The adjustment
procedure will be conducted by using the conceptual approach, i.e., we will
not use any physical argument in adjusting the models or in interpreting the
results. First, we will present the conceptual approach from a theoretical point
of view, with focus on avalanche-dynamics models. Then the field site of Col du
Lautaret and the recorded data will be described. We will show that simple
linear models fail to reproduce the output data, which include the run-out
distance and the velocity measured at one point of the path profile. Finally,
three conceptual models will be presented and tested against field data.
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2 The conceptual approach

Avalanches are natural phenomena that can be studied within the frame-
work of fluid mechanics, but the same scientific methodology as water (e.g.
for floods) cannot be used because of the complexity of snow properties and
scale effects between full-scale avalanches and laboratory experiments. Despite
these issues, most researchers still think that avalanche dynamics should be
dealt with by using a deterministic framework [e.g. Harbitz et al. (1998)].
Most avalanche-dynamics models use a rheological equation, which can be
broken down into two contributions: a Coulombic contribution and a turbu-
lent contribution, giving rise to the Voellmy model of the frictional force. No
clear evidence has been provided so far to justify this model. On the contrary,
the recent investigation by Ancey and Meunier (2004) reveals that the de-
pendence of the frictional force on avalanche velocity is much more complex
than assumed by Voellmy’s assumption. Given the difficulties met in describ-
ing avalanche dynamics, an alternative approach is to idealize the avalanche
motion by using a conceptual approach similarly to the longstanding practice
in hydrology [e.g., see (O’Connell and Todini, 1996)].

The basic idea is to assume that there is a single functional relationship G
between the two output variables (run-out distance and velocity at one point)
and other field data. These other field data include snowfalls preceding the
avalanche, starting point elevation, released snow volume, etc. For the moment,
we do not specify the type and number of these data but merely refer to them
generically as the input variables Θ. The functional relationship G relates the
output variables Ω of a given event to the input variables Θ. Obviously there
is not a one-to-one universal function linking Ω to Θ: indeed, it is expected
that G also depends on the topographical features of the path and on a set Π
of internal or structural parameters, reflecting the diversity and variability of
snow properties and avalanche motion:

Ω = G(Θ|Π, path).

Here, in order to take the path influence into account, we assume that the
functional G is a mathematical operator resulting from the integration of a
momentum equation along the path profile z = f(x) (see below). In this paper,
since we will use only the experimental events obtained on the Lautaret field
site; the run-out distance xstop and the maximum velocity measured in one
point uobs are the output variables: Ω = {xstop, uobs} for the three models.
Furthemore, the input variables Θ and the internal parameters Π will depend
on the chosen model.

At the risk of blurring the border between the conceptual and physical ap-
proaches, it seems natural to use operators based on fluid-mechanics equations,
i.e., based on either partial derivative or differential equations describing the
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fluid motion. As the partial derivative equations of the fluid flows require a
great deal of input data (boundary and initial conditions), which are rarely
available, the simplest models are based on the differential equation used to
calculate the movement of a block sliding on a slope. In order to integrate
the momentum equation along the path profile, an avalanche is idealized as a
solid mass sliding along a curvilinear path and experiencing a frictional force
F , possibly depending on θ and/or u (θ is the local slope, u is the local veloc-
ity). We assume that the structure of this frictional force is identical whatever
the path and the avalanche; only its parameters can vary from one event to
another. The three models differ only in the model used for the frictional
force F . Here we will consider: F = µmg cos θ + κu2 (Voellmy-like model,
§ 5.1), F = µ(x)mg cos θ+κ(x)u2 (generalized Voellmy-like model, § 5.2), and
F = kmg cos θ(tan θ − µ) (modified Coulomb-like model, § 5.3). The general
expression of the momentum equation can be written:

du

dt
= g sin θ − F (θ, u)

m
, (1)

where m is the avalanche mass and t is time. As initial conditions, we use
u(xstart) = 0, where xstart is the starting-point abscissa. The momentum equa-
tion is integrated along the path profile z = f(x), where z denotes the elevation
and x the abscissa along a horizontal axis; s is a curvilinear abscissa taken

from an arbitrary origin on the path profile: s =
∫ s
0 (1 + f ′2(σ))

−1/2
dσ. After

integrating the equation numerically, we look for the two output variables of
interest: the run-out distance xstop is given by the position of the stopping
point at which the avalanche velocity vanishes, the maximum velocity calcu-
lated at the abscissa of the measuring mast is stored. If they differ from the
experimental output variables, we modify the internal parameters Π until ex-
perimental and calculated values compare sufficiently. As Equation 1 is used
as the basis for the conceptual models and not in a deterministic approach, we
will call the conceptual models Voellmy-like or Coulomb-like models in order
to distinguish them from the deterministic models.

3 Lautaret field site

4 The available data

The Lautaret field site (see Fig. 1) is located on a southeast slope between
2000 and 2400 m in elevation. Figure 2 shows the profile of the two main paths.
In the 1970s, avalanches were released with explosives. The starting elevation
of these releases was approximately the same for all avalanches (Zstart=2330–
2335 m for Path 1 and Zstart =2380–2385 m for Path 2). The researchers who
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conducted the experiments used a map at the scale of 1:5000 and gave the
starting and stopping (Zstop) elevations within an uncertainty of ±1 m. Since
they reported their measurements in terms of run-out elevation, we followed
them and used this datum rather than the abscissa x, even though z is less
relevant in practice. Several masts were installed perpendicular to the slopes
(at z =2227 m for Path 1 and z =2225 m for Path 2; see Fig. 2). Pressure and
velocity sensors were mounted on the masts. Pressure sensors were membrane
sensors or dynamical sensors; punctual velocity was measured with propeller-
type Nerflux probes provided by Neyrtec (France). The avalanche front speed
was measured by using photogrammetry techniques. Further information can
be found in (Bon Mardion et al., 1975) and (Eybert-Bérard et al., 1977, 1978).
The uncertainty of the velocity was estimated by the investigators to lie in the
range 5–10%; here we adopt ±10%. Other measurements were taken: density
of the snow in motion as well as density and temperature in the snowcover in
the starting area (before the release) and in the avalanche deposits. Density
measurements were taken by using gamma densitometry techniques. For each
experiment, ram tests and stratigraphic profiles were done. The avalanche
depth was estimated from the number of sensors on the masts affected by the
avalanche.

Twenty-two events were recorded for Path 1 and Path 2 (Eybert-Bérard et al.,
1978). However, not all the events were fully documented. Eventually, we had
nine events versus fourteen for Path 1 and five versus eight for Path 2. These
events are reported in boldface in Table 1. The volumes of the avalanches
were rather small (500–1500 m3). The run-out distances varied from 300 to
800 m. Table 2 reports three types of avalanches with the corresponding snow
type. The first type is a dense avalanche composed of powder snow and should
not be confused with an airborne avalanche. The avalanche phenomenon was
analyzed by Eybert-Bérard et al. (1978): “for the two first types, there is
always a dense snow flowing at the bottom and a powder cloud on the top.
This powder cloud is more important when the density is smaller and the snow
colder. Wet snow, characteristic of the third type, gives a slower flow made
of dense flowing snow without any powder cloud.” The authors also remarked
the tendency of the flowing snow to become denser and warmer, especially in
the stopping phase.

The available quantitative data (velocity, density, run-out distance, etc.) do
not show noticeable differences between the three avalanche types when we ex-
amine these data one by one because their ranges of variation overlap widely.
However, Eybert-Bérard et al. (1978) pointed that the first category behaved
in a slightly different way: greater run-out distances, lower densities, and
higher velocities. Figure 3 shows that this difference appears when combin-
ing the run-out distances and the measured velocities. As a consequence we
separated the first type of avalanches from the two others.
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Since velocity measurements obtained by photogrammetry and Nerflux probes
were well correlated, it was possible to estimate some of the missing velocity
values. All the data useful for the study are presented in Table 1. We used the
velocity measurements provided by the Nerflux probes. When the avalanche
flow depth could not be measured exactly, but only a minimum value was
provided, we used this value in the computations.

4.1 Are linear models pertinent?

Figure 3 shows that there is no correlation between velocity and run-out dis-
tance, whereas we only found a slight correlation between velocities and flow
depths (see Fig. 4). This is confirmed by the middle value of the coefficient of
determination R2 = 0.51 for the data taken from the two paths. This clearly
shows the complexity of avalanche behavior, since a physically-based approach
would have suggested that the higher the velocity, the longer the run-out dis-
tance. Since linear correlation fails to reproduce one variable when the other
is known, linear models are not pertinent and it is necessary to use nonlinear
models.

5 Three conceptual dynamic models

5.1 The Voellmy-like model

In this model, the frictional force F in Equation 1 is split into a slope-
dependent term and a velocity-dependent term: F = µmg cos θ + κu2, where
Π = {µ, κ} are the two internal parameters. The former contribution makes it
possible to control the avalanche run-out distance, whereas the latter mainly
influences the maximum velocity that the avalanche can reach. Moreover, it
has often been thought that the avalanche mass or volume often influences the
force: the larger volume V is, the lower its bulk friction is. Thus, parameter κ
must be a function of the avalanche volume. For convenience, here we assume
that this dependency can be written in the following form: κ = g/(ξH) where
ξ is a friction coefficient and H is a typical length assumed to give an estimate
of the flow depth of the avalanche. We will adopt the maximum avalanche flow
depth measured at the mast. Finally, in this model, we have: Θ = {xstart , H}.
H as well as the internal parameters Π are considered constant all along the
path profile.

Considered from a deterministic perspective, this model is well-known and
often found in the literature (Bakkehøi et al., 1980; Buser and Frutiger, 1980;

6



Perla et al., 1980; Bakkehøi et al., 1983; Salm et al., 1990; Salm, 1993). As al-
ready stated, it has been fitted manyfold, but most often by using incomplete
data. Moreover, a back analysis on the bulk rheological behavior of a few doc-
umented events showed no square-velocity dependency (Ancey and Meunier,
2004). Lastly, it is already known that the Voellmy model gives underesti-
mated velocity values in some cases (Bartelt et al., 1997). Let us examine the
reasons why the Voellmy model can fail to be adjusted. To obtain a constant
value for a single output variable (for instance xstop), there is an infinity of
solutions for the internal parameters Π, as shown in Fig. 5 for a given event
observed in Lautaret Path 1. The corresponding calculated velocity ucalc (ξ)
has an asymptotic value; for other paths, velocity can reach a maximum value
before decaying to its asymptotic value. Let us refer to it as uasymp. If the
measured value uobs exceeds uasymp, it is not possible to adjust Π. If it is lower
but very close to uasymp (see Fig. 5), the uncertainty of the solution for ξ will
be very high because of the convexity of the curve ucalc (ξ). In order to over-
come this problem, we adopt the following criterion: uobs ≤ 0.9uasymp for Π to
be determined. The factor 0.9 is arbitrary and accounts for the uncertainty on
the measurements of uobs.

5.2 The Generalized Voellmy-like model

Bartelt et al. (1997) solved the problem of underestimated velocity in the
Voellmy model by assuming that the internal parameters Π can vary along
the path profile: Π (x) = {µ (x) , ξ (x)}. We will refer to this model as the
generalized Voellmy-like model.

The degree of freedom of this functional dependence is infinite. We want to
reduce this degree of freedom by arbitrarily setting the functions of Π. For the
Aulta path (Switzerland), Bartelt et al. (1997) linked ξ (x) with µ (x) by using
a relationship that can be approximated by: ξ (x) = e10−6µ(x). We consider that
this relation holds for the Lautaret paths for any type of avalanche. To relate
µ (x) and tan θ (x), we assume that

µ (x) =
µmax + µmin

2
+

µmax − µmin

2
tanh [R (tan θmoy − tan θ(x))] , (2)

where µmin and µmax are the two bounds within which µ (x) can vary. Note
that this equation holds for the Aulta path (see Fig. 6). The curve behavior
is ruled by tan θmoy (shifting property) and by R (steepness property):

• for low and positive values of R, the curve is flat,
• for large and positive values of R, it decreases smoothly but rapidly from

µmax to µmin when tan θ(x) is close to tan θmoy for high values of R,
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• for negative R values, the curve varies inversely, i.e., µ (x) increases from
µmin to µmax with increasing θ (x).

Since this function has four parameters, we must keep two of them constant in
order to obtain two internal parameters for the fitting. After many attempts,
we decided to set µmin = 0.1 and tan θmoy = 0.6. Finally, for the internal
parameters, we obtain Π = {µmax , R}. If µmin and tan θmoy are conveniently
chosen, we should be able to fit all the events with this generalized Voellmy-like
model.

5.3 The modified Coulomb-like model

This model is also based on Equation 1, but the expression of the frictional
force differs from the Voellmy model. Different observations drawn from the
Aulta-avalanche behavior (see Fig. 7) justify this new model. Three phases in
Fig. 7 can be recognized: (i) a starting and accelerating phase, (ii) a plateau
phase where velocity varied in a smoother way than in the other phases, (iii)
a quick decelerating and stopping phase (see also (Ancey and Meunier, 2004).
From the Aulta measured velocities, inverting Equation 1, we can deduce the
values of the friction force F (θ, u)/m along the profile. This force varied slowly
during the plateau. It was much lower in the accelerating phase, whereas it was
higher in the decelerating phase. This means that the frictional force should
depend on the sign of the acceleration. This dependence cannot be modeled
with a friction force varying as a quadratic velocity such as the Voellmy-like
equation, which explains why this model cannot calculate high velocities in
certain cases.

The solution proposed here consists in using the Coulomb friction as the main
friction force. When µ is properly chosen, the deviation between gravitational
and frictional forces has the same sign as the acceleration: positive during
the accelerating phase, but negative during the decelerating phase. We will
amplify or decrease this deviation by introducing a new parameter k for the
measured and calculated velocities to match. The equation of this new model
is

du (x)

dt
= kg cos θ (x) [tan θ (x)− µ] .

Note that this model is meaningless from the physical viewpoint (unless we
try to interpret k as a mass-added coefficient or a factor reflecting avalanche
mass balance), but is correct from the conceptual viewpoint. With k > 1, the
difference between the gravity force and the frictional force increases and the
velocity of the plateau phase should increase, and inversely when k < 1. The
solution for the Aulta avalanche is obtained with µ = 0.4272 and k = 1.075
(see Fig. 7). With this model we have Θ = {xstart} and Π = {µ, k}. The flow
depth of the avalanche is no longer an input variable.
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This model has interesting properties:

• The equation of motion can be integrated along the path profile using the
curvilinear abscissas s and analytical approximations can be proposed.

• The two internal parameters are independent coefficients: µ controls the run-
out distance and k the velocities. In contrast with the Voellmy-like model,
this model can be easily fitted by using the two output variables.

• The calculated velocities are proportional to
√

k ; this property can be used
by practitioners when they have information on the velocity at one point to
deduce the value of k and then calculate the velocities at any point. This
also shows that the variation range of the computed velocity is [0,∞[. There
is no maximum limit contrary to the Voellmy-like model.

• This model is an extension of the Coulomb-like model with one parameter
only, proposed for granular flows (Savage and Hutter, 1989) and used for
avalanches (Mougin, 1922; Dent, 1993; Ancey, 2004). By setting k = 1, one
can apply this model to paths where the only available output variable is
the run-out distance (Ancey, 2004).

It will be necessary to test this new model on many examples to evaluate
its confidence more precisely. Here, we will only fit the internal parameters
Π = {µ, k} to the experimental results obtained on the Lautaret field site.

6 Results

6.1 The Voellmy-like model

The results are presented in Table 3. Only 50% of the events could be repro-
duced by using the Voellmy-like model. Failures occurred for every type of
avalanches. Figure 8 reports the results in a diagram xstop − uobs: it is clearly
seen that the adjustment procedure failed because recorded velocity measure-
ments were higher than asymptotic velocities. We have plotted two border
lines between the data scatters pertaining to fitted and not-fitted events. These
borders depend on the avalanche path. On the contrary, when the results are
reported in a diagram u − µ (see Fig. 9), we obtain the same border line for
both paths, which is roughly parallel to the equation proposed by Schaerer
(1974).

Finally, we conclude that the Voellmy-like model fits the results for only 50%
of the events because of its limitation to compute high-velocity avalanches.
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6.2 The generalized Voellmy-like model

All the events were fitted when the generalized Voellmy-like model was used.
The fitting procedure required many trials because the two internal param-
eters influenced the two outputs xstop and uobs. To obtain the exact value of
xstop and/or uobs, it was sometimes necessary to use many digits for the in-
ternal parameters µmax or R. This means that outputs of this model do not
vary continuously with internal parameters; in other words, there must be
bifurcations in the relationship Ω = G(Θ|Π, path).

The range of variation of µmax was 0.57 – 0.95; the range of variation of R was
−0.79 to 4.45, when we consider all the events for both paths. There was only
one negative value for R. For each avalanche, we also stored the values of the
corresponding friction parameters ξ (x) and µ (x) computed for the starting
and stopping x-values of the path profile. The range of variation was wide,
but consistent with the values reported in the literature. The starting values
of ξ were sometimes higher than 10,000 m/s2.

The two internal parameters used for the fitting appeared to be linearly in-
dependent (coefficient of determination R2=0.29) when we combined the two
paths (see Fig. 10). A distinction appears between Type 1 avalanches and
the other types, more or less reproducing the separation already seen with
the natural variables (Fig. 3). The data scattering for Type 1 avalanches is
substantial compared to Types 2 and 3. Among others, regarding the mean of
the internal parameters, there was not much difference between Type 1 to the
two other types (see Table 4), whereas the standard deviations differed signif-
icantly. The correlation of the internal parameters with the input or output
variables was negligible, except for the relationship between Zstop and µmax

(coefficient of determination R = 0.82 or 0.95 according to the path, see Fig.
11); in this case, the data scattering results from the influence of the avalanche
flow depth H. The other internal parameter R does not seem to depend on
the path profile; it may genuinely reflect the dynamic behavior of the events.

In short, the generalized Voellmy-like model gave the expected results: all the
events observed at the Lautaret Pass were reasonably well described. However,
its use was less easy than the Voellmy-like model. It has a priori the substantial
handicap of possessing six parameters. We explained earlier how we passed
from six to only two parameters, in keeping µmin, tan θmoy and the parameters
of the relationship between ξ (x) and µ (x) constant. All these parameters
were the same for the Aulta and Lautaret paths, except for tan θmoy (0.25
versus 0.6). This parameter could be a regional parameter, but it is hard to
believe that it can become a universal parameter. Finally, despite our efforts
to minimize the number of parameters, this model has three parameters and
this is probably too large to make it a convenient tool in the avalanche study.
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6.3 The modified Coulomb-like model

All the events were fitted when the modified Coulomb-like model was used. To
adjust the friction parameters, we first sought the values of µ by matching the
computed and recorded distance for each event, then we altered the value of
k for the avalanche to reach the recorded velocity. The fitting procedure was
much simpler compared two other models. The values of µ fell within 0.49–
0.68 and the values of k within 0.3–2.1. Moreover, the calculated velocities
are shape-invariant (homothety) when

√
k varies (here

√
k varied from 0.54 to

1.5). For 11 events, this parameter was smaller than 1, whereas for 3 events it
exceeded unity. This means that, if we set k = 1 (Coulomb model), the model
can overestimate avalanche velocity.

Since the starting position was the same for all the events and the avalanche
flow depth was not used in the computations, µ and Zstop were found to be
strongly linked; similarly, k and uobs are linked together (see Fig. 12). Note that
the two internal parameters reproduced the same separation between Type 1
avalanches and other avalanches, as shown previously (compare Fig. 13 and
Fig. 3). The mean parameters of each group are given in Table 5. They clearly
show that Type 1 avalanches went farther (µ is lower), with higher velocities
(k is greater); the standard deviation was also larger for Type 1 avalanches.
It is worth noting that all the values of k for the second group of avalanches
(Types 2 and 3) did not exceed unity.

In short, when used as a conceptual model, this new model is an easy tool
to simulate the motion of avalanches and gives good results when it is tested
against field data coming from the Lautaret Pass database.

7 Conclusion

In this paper, the friction parameter of three conceptual models have been
fitted by using field data obtained at the Lautaret Pass (14 events). For each
event, we tried to linearly relate the input variables to the output variables,
but we did not succeed. Consequently, we used nonlinear models based on the
sliding-block analogy. We used two versions of the pervasive Voellmy model
for the frictional force. For the first version, the two internal parameters are
constant along the path profile; in the second version referred to as the gener-
alized Voellmy-like model, they can vary along the path profile. For the third
model, we proposed a new equation for the frictional force: a Coulombic (slope-
dependent) contribution and a varying-mass effect, which involves replacing
the mass m in the acceleration term by m/k, where k is a constant factor.
The structure of this modified Coulomb-like model exhibits useful features.

11



Each of the three models has two parameters that have been fitted by using
the data of 14 events. The main results can be summarized as follows:

• The Voellmy-like model fails when the measured velocities are high. Here
only 50% of the events can be described by this model.

• The generalized Voellmy-like model has been constructed to offset this de-
ficiency. The 14 events have been properly described. The model has six
parameters and we set four of them by using ad hoc assumptions. These
parameters are unlikely to be universal coefficients. Moreover, their fitting
procedure is complicated.

• The modified Coulomb-like model is simple to use and the 14 events can
be described properly. It is obviously the most appropriate model for the
Lautaret Pass.

For the generalized Voellmy-like and modified Coulomb-like models, inter-
nal parameters can be partitioned into two groups, each corresponding to an
avalanche family. Notably avalanches mobilizing powder snow go farther and
reach higher velocities.

From the practical point of view, we can draw the following conclusions:

• Practitioners should be careful with the Voellmy model: this model is known
to give good results for the run-out distance, but it can underestimate ve-
locity. Consequently, it is better to use the modified Coulomb-like model.
We can use k = 1 if there is no information regarding the nature of the
avalanche. Table 5 provides values of k when the avalanche type is known.

• A conceptual model can be easily designed when data are available. In this
case it can be an interesting alternative to a physically-based avalanche-
dynamics model. So the crux of the issue turns around the availability of
data.
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Figure 1: Photo of the avalanche paths equipped for experiments done in the 1970s and
1980s
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Figure 2: Path profiles n°1 and n°2 of the Col du Lautaret site
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Figure 5: Results of the Voellmy-like model fitting for the event of 14/02/03 on Path 1,
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
Local slope

  µ
  

 v
al

ue
s 

FEM model, Bartelt et Gruber, 1997 p 84)

tanh formula   

µ Min =0.1
µ Max =0.4

 tanθ milieu =0.25 
R =5

Figure 6: Relationship between µ  values and the local slope for Aulta path (Bartelt and

Gruber, 1997)



4/18

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500

Horizontal distance from the crest (m)

Ve
lo

ci
tie

s 
 (m

/s
)

1500

1700

1900

2100

2300

2500

2700

2900

Profile

Elevation (m
)

Velocity

Starting and 
accelerating

Plateau Decelerating and 
stopping

measured
calculated

Figure 7: Profile of the Aulta avalanche dynamic with measured velocities (Bartelt and
Gruber, 1997) and velocities calculated with the modified Coulomb-like model (dashed-

line) (µ=0.4272, k=1.075)

2000

2025

2050

2075

2100

2125

2150

2175

2200

2225

2250

2275

0 5 10 15 20 25 30
Velocities (m/s)

St
op

pi
ng

 a
lti

tu
de

s 
(m

)

Path  n°1 -  Fitted events  
Path  n°1 -  Not fitted events  
Path  n°2 -  Fitted events
Path  n°2 -  Not fitted events  
Separation border for path n°1
Separation border for path  n°2

Figure 8: Separation between fitted events and nonfitted events for the Voellmy-like
model



5/18

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

5 10 15 20 25 30
Measured velocities   U obs   (m/s)

 µ
Vo

el
  v

al
ue

s 
 

Path  n°1 - Fitted events  
Path  n°1 - Not fitted events  
Path  n°2 - Fitted events  
Path  n°2 - Not fitted events  
Limit between fitted and not fitted events 
Schaerer's  equation 
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Date Avalanche x stop z stop Measured
type (m) (m) velocity  (m/s) measured used

24/01/1973 3 289 2150 10.35
14/02/1973 3 289 2150 13.95 0.75 0.75
08/02/1974 4 532.75 2050 26 1.5 1.5
01/03/1974 3 345 2120 11 0.7 0.7
22/01/1975 2 309 2140 13.5 0.6 0.6
31/01/1975 2 362.75 2110 >1.3 1.3
12/03/1975 3 16.8 >0.9 0.9
17/02/1976 1 242.75 2175 8.7 0.6 0.6

08/12/1976 4 345 2120 24 1.1 1.1

23/02/1977 4 392.75 2095 18 0.85 0.85
27/01/1978 3 20 1.1 1.1
14/02/1978 3 20 1.05 1.05
29/03/1978 1 362.75 2110 16.6 >1.45 1.45
04/04/1978 1 345 2120 9 0.3 0.3

Heigths  (m)

a) Path no. 1

Date Avalanche x stop z stop Measured
type (m) (m) velocity  (m/s) measured used

24/01/1973 3 430.4 2110
14/02/1973 3 372.0 2140 16.5 0.8 0.8
08/02/1974 4 738.3 2030 24.9 >1 1
22/01/1975 2 421.1 2115 16 0.7 0.7
12/03/1975 3 16.5 >0.84 0.84
06/02/1976 4 372.0 2140 20 1.5 1.5
17/02/1976 2 411.6 2120 12.5 0.5 0.5
04/04/1978 1 430.4 2110 >1.5 1.5

Heigths  (m)

b) Path no. 2

Table 1: Usable data on Col du Lautaret site

Number of  Avalanche Nature of Density
the category type the snow (kg/m3)

1 Powder snow Cold, dry 80-120
2 Mixed slab-powder Cold, dry 120-250
3 Wet snow Snow at 0°C, wet 250-400

Tableau 2: Avalanche and snow types (Eybert-Beyrard A. et al., 1978): “powder snow”
does not mean that the avalanche was airborne but that the avalanche mobilized powder
snow. “Cold” means that temperature is below 0°C.
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Table 3: Results of fitting the Voellmy-like model

Mean Standard 
value deviation

0.74 0.15
0.87 0.06

1.57 1.95
1.83 0.78

Avalanche 

R
Type 1

Types  2 and 3

type
µ max

Type 1
Types  2 and 3

Table 4: Results of fitting the Generalised Voellmy-like model, for µmin = 0.1 and
tanθmoy= 0.6

Mean Standard 
value deviation

0.59 0.08
0.65 0.02

1.23 0.56
0.64 0.25

Type 1
Types  2 and 3

type
µ Coul

Avalanche 

Types 2 and 3

k
Type 1

Table 5: Results of fitting the modified Coulomb-like model

Total
1 2  and 3

1 6 7
2 2 4
1 2 3

Total 4 10 14

Avalanche type

Success or failure of the fitting
Success

Failure according to u obs  <  0.9 * u asymp

Failure according to u obs  <  u asymp


