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Synopsis

This paper develops a new approach to computing the shear rate from the torque and ro
velocity measurements in a Couette rheometer. It is based on wavelet-vaguelette decom
sWVDd proposed by DonohofDonoho, D., Appl. Comput. Harmon. Anal.2, 101–126s1995dg.
This decomposition consists in expanding the shear rate into a truncated wavelet series
coefficients can be determined by computing the inner products of the wavelet functions w
functions svagueletted. Compared to other strategies used for recovering the shear rate
as Tikhonov regularization, the WVD method exhibits greater accuracy and faster conve
Because of the spatial adaptivity of wavelets, it still performs well when the flow curve is irre
syield stress, sudden behavior change, etc.d and thus no prior knowledge of the sh
rate characteristicsse.g., existence of a yield stress, smoothnessd is needed. Its efficienc
is demonstrated by applying the method to two fluidssa polymeric gel and a granul
suspensiond. © 2005 The Society of Rheology.fDOI: 10.1122/1.1849181g

I. INTRODUCTION

A longstanding problem in rheometry is the so-called Couette inverse proble
which one tries to derive the flow curvetsġd from the torque measurementsMsvd in a
coaxial cylindersCouetted rheometer, wheret is the shear stress,ġ denotes the shear ra
v is the rotational velocity of the inner cylinder, andM represents the torque per u
heightfColemanet al. s1966dg. The shear stresst exerted on the inner cylinder of radi
R1 can be directly related to the measured torqueM by t=a1M, with a1=1/s2pR1

2d,
independently of the form of the constitutive equation. The shear rate is related
rotational velocityv by

v =E
R1

R2 ġsrd
r

dr, s1d

whereR2 denotes the outer-cylinder radius and it is assumed thatsid the rotational veloc
ity of the outer cylinder is zero andsii d there is no slip between the inner cylinder and
sheared material atr =R1. In order to recover the flow curve from measurements o
rotational velocityvsMd, one must be able to
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442 CHRISTOPHE ANCEY
sid relate the functionġsrd to tsrd;
sii d find out a means of inverting the integral relationships1d; and
siii d estimate the continuous functionġstd from a set of discrete valuessvi ,Mid.

For a broad class of fluidsssimple fluidsd, the first step is systematically achieved si
there is a one-to-one relation between the shear stress and the shear rate fo
viscometric flows:ġ= ġstd. Moreover, the momentum equations imply that the s
stress distribution across the gap is given bySsrd=M / s2pr2d=tsR1/ rd2, wherer denotes
the distance from the vertical rotation axis of the cylinders. Under these cond
which are not too stringent, it is possible to make the variable changer =R1

Ît /S in the
earlier integral; we then derive the well-known equationfColemanet al. s1966d, Krieger
and Elrods1953dg:

vstd =
1

2
E

bt

t ġsSd
S

dS, s2d

whereb=sR1/R2d2. The next step is to recoverġ from vstd.
Although this problem admits an analytical theoretical solution in the form o

infinite seriesfColemanet al. s1966dg, deriving the shear rate remains a difficult tas
practice because the derivation enters the class of ill-posed problemsfFriedrich et al.
s1996dg. In rheometry, the first attempt at solving Eq.s2d can be attributed to Moone
s1931d, Krieger and Marons1952d, and Krieger and Elrods1953d. When b is close to
unity, it is possible to directly approximate the integral to the first order by

vstd =
1 − b

2
ġstd + osbġd.

Whenb moves away from unity, further terms are needed in the expansion of the in
into a b series. Although refined to achieve higher accuracyfYang and Kriegers1978dg,
Krieger’s approach was unable to provide reliable results for viscoplastic flowsfDarby
s1985d, Nguyen and Bogers1992dg or for data contaminated by noisefBorgia and Sper
s1990dg. Alternative methods have been proposed: Tanner and Williamss1970d developed
an iterative procedure, whereas Macsporrans1989d, Yeow et al. s2000d, and Leong an
Yeow s2003d used a regularized least-square approach, which involves discretizi
integral term and regularizing it.

These methods are very efficient for a wide range of well-behaved rheological
tions. However, when the rheological behavior exhibits singularities such as yield
or a rapid shear thickening, the regularization procedure can lead to unrealistic res
smoothing out the singularities or to complicated trial-and-error loops. For ins
when testing Tikhonov’s method with viscoplastic flows, Yeowet al. s2000d had to
evaluate the yield stress iteratively, which may involve a large number of comput
and slow convergence. This undesired behavior is to a large extent the result of a
ing to evaluate a continuous functionfġstdg from a finite set of discrete values represe
ing measurements of bulk quantities. This task is more delicate than believed, esp
when data are noisy. For a well-behaved rheological equation, imposing a certain
of smoothness in the regularization procedures does not entail many problems.
contrary, for complex rheological responses, it becomes increasingly difficult to d
genuine rheological properties, noise effects, and discretization errors.

The objective of this paper is to propose a new method for recovering the she
from the functionvstd, which is numerically stablesno noise amplificationd and can dea

with irregular functions. The basic idea is to approximate the solution using a finite series



nction
v poly-

be
ed an

wavelet
tations of
r-

sential

l theory

-
cause
tion,
ractical

rate
rity of

solve
proach
ethod

u-
o
nction

ve
o invert
e-

d
s

ethod
omet-

for the

rm:

hed

443SOLVING THE COUETTE INVERSE PROBLEM
of properly selected functions. We will then show how to invert the integral Eq.s2d using
specific properties of this equation. In applied mathematics, a large number of fu
families are used to approximate functions, e.g., Legendre polynomials, Chebyshe
nomials, trigonometric functionssFourier expansiond, etc., but when the function to
approximated is highly nonlinear or exhibits singularities, the expansion may ne
infinite number of terms to be accurate. In that case, it is advantageous to use
functions because these functions have been designed to provide sparse represen
regular and irregular functionsfLouis et al. s1997dg. Although they are not the corne
stone in the derivation of the method, wavelet functions turn out to be an es
ingredient when applying the method to real data.

The approach developed here takes its roots in a more general mathematica
referred to as theadjoint-operator methodproposed by Golbergs1979d and one of its
recent extensions calledwavelet-vaguelette decompositionsWVDd. This theory was de
veloped by Donohos1995d to solve certain classes of inverse problems. Perhaps be
of its lack of versatility and the mathematical difficulties arising in its implementa
little research has attempted to apply this technique to solve inverse problems in p
situationshe.g., Kolaczyks1996d in tomography andfChampier and Grammonts2002dg
for particle-size distributionj. In this paper, we will focus on recovering the shear
from the rotational-velocity measurement in practical cases, whatever the irregula
the constitutive equation.

Section II will present the different mathematical approaches used so far to
inverse problems such as the Couette problem. This will help to situate the ap
presented here with respect to other techniques. Two formulations of the WVD m
will be outlined:

• a continuous formulationsSec. IIId, in which the rotational velocity is a given contin
ous function. In practice, this means that the measurementssvi ,Mid are interpolated t
provide a smooth function assumed to give a correct representation of the fu
vstd. In this way, we separate problemssii d and siii d earlier; and

• a discrete formulationsSec. A in the Appendixd, where the only information we ha
are measurements of the rotational velocity. In the same process, we are trying t
Eq. s2d fproblemsii dg and infer the local relationshipġstd from a finite set of measur
ments taken on the macroscopic scalesvi ,Mid fproblemsiii dg.

In Sec. IV, we apply the WVD method to two fluidssa viscoplastic polymeric gel an
a granular suspension exhibiting an unusual rheological behaviord, and we show it
efficiency in recovering the flow curve compared to the regularized least-square m
sTikhonov’s methodd. The mathematical proofs and a Mathematica package for rhe
ric applications are available as an EPAPS document; see the Reference section
details.

II. MATHEMATICAL STRATEGY

In the Couette inverse problem, Eq.s2d can be represented in the generic fo
vstd=sKġdstd, whereK is the integral operator

sKfdszd =E
bz

z fsxd
x

dx, s3d

with b a constant parametersb,1d. A considerable body of literature has been publis

over the last three-decades on ill-posed inverse problems in this formfBertero et al.,
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444 CHRISTOPHE ANCEY
s1985, 1988d, O’Sullivan s1986d, Tenorios2001dg. Schematically, we can split the vario
methods for solving Couette-like problems into three main categories.

• Least-square approach: instead of solvingv=Kġ, an attempt is made to minimize t
residualiv−Kġi, usually with an additional constraint on the norm ofifi or its de-
rivativessd, to control the smoothness of the solution. Tikhonov’s regularization me
used by Yeowet al. s2000d and Landweber’s iterative procedure used by Tanner
Williams s1970d come within this category. The advantages of this method a
robustness against computation inaccuracies and measurement errors, its versa
fast convergence when the function to be recovered behaves reasonably well,
relative facility of its implementation. The drawbacks are that it relies on an arb
selection of the regularization operatorseven though specific procedures have b
establishedd and its limited capacity to retrieve irregular functions.

• Projection approach: the idea here is to discretize the problem by projecting the f
tion over a finite space spanned by a family of functions enjoying specific prop
ssuch as orthogonalityd ui. Equations2d is then replaced by the finite set of equati
kKġ ,uil=kv ,uil for 1ø i øp, wherekf ,gl=eRfsxdgsxddx denotes the inner product
the function spacefDicken and Maasss1996d, Louis et al. s1997d, Rieder s1997dg.
Galerkin’s method, used by Macsporrans1989d with spline functions, provides a typ
cal example for Couette rheometry. Irregular functions can be recovered by
methods provided appropriate projection functions are chosen in advance.

• Adjoint operator approach: for many reasons, it is usually either not possible or
advantageous to compute the inverse operatorK−1. In some cases, however, it is p
sible to provide a weak inverse formulation, in which the functionġ is expressed as

ġ = o
iPJ

kKġ,uilCi ,

where the summation is made over a setJ,Ci is an orthonormal basis of functions, a
ui denotes a family of function solutions of the adjoint problemK*ui =Ci, whereK* is
the adjoint operator ofK fGolberg s1979dg. Typical examples includesingular-value
decompositionfBerteroet al. s1985, 1988dg, a generalized formulation based onrecon-
struction kernelsfLouis s1999dg, wavelet-vaguelette decompositionfDonoho s1995dg,
andvaguelette-wavelet decompositionfAbramovich and Silvermans1998dg. The solu-
tion to the inverse problem is found by replacingKġ with v in the equation earlier an
filtering or smoothing the inner productskKġ ,uil and/or truncating the sum.

This partitioning is a bit arbitrary because there are interconnections between th
categorieshe.g., Tikhonov’s regularization can be viewed as a special case of sin
value decompositionfBerteroet al., s1988dgj. This is, however, sufficient in the prese
paper to outline the main approaches used so far and to situate the previous atte
solving the Couette problem. Alternative methods, e.g., stochastic methodsfGamboa an
Gassiats1997d; Mosegaard and Sambridges2002dg, are also possible, but have never b
used in rheometry as far as we know.

Here we will develop a strategy based on wavelet-vaguelette decompositio
wavelet functions are orthonormal functions generated from dilations and translat
a special function, called themother waveletc ssee the EPAPS document for an int
duction to their useful properties or any textbook on waveletsd and associated with a
other function called thefather waveletor the scaling functionf. One of their mos
interesting properties is that, for some classes of mother wavelet such as Dau

wavelets, it is possible to know the convergence rate and the accuracy of the solution in
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445SOLVING THE COUETTE INVERSE PROBLEM
advance. A large part of their success lies in their spatial adaptivity: contrary to
families of orthogonal functionssLegendre, Chebyshev, trigonometric, etc.d, wavelets ar
well localized and scale-dependent, which makes it possible to provide sparse re
tations of regular and irregular functions.

III. FUNCTIONAL FORMULATION OF WAVELET-VAGUELETTE
DECOMPOSITION

A. Principle

We will begin by exposing the principle in a very simple manner. A more rigo
mathematical derivation follows. Let us assume that we can approximate any she
function ġstd with a finite series of terms

ġstd < o
k

akCkstd,

where Ck denotes thekth member of a family of orthogonal functions, i.
eCkstdCistddt=dik; making use of this property, we could compute the coefficientsak as
ak=eġstdCistddt if the function ġstd were known.

Using the linearity of the integral operatorK, we have

vstd = sKġdstd < o
k

aksKCkdstd.

Note that the functionvstd shares the same coefficientsak as the shear-rate functio
implying that if we were able to expandvstd into asKCkd series, we could determine t
coefficientsak, then find an approximation ofġstd.

Unfortunately, the functionssKCkdstd are not orthogonal, making it difficult to n
merically computeak. Specific procedures such as the Schmidt orthogonalization p
dure could be used to derive an orthogonal family of functions fromsKCkdstd, but here
this involves overly complicated computations. We will envisage another technique
on dual bases. A dual basis of the function basissKCkd is a set of functionsui such tha
euistdsKCkdstddt=dik, implying thatak=evstdukstddt. Therefore the crux of the iss
lies in the derivation of the dual basisuk. In the following, we will show that th
functionsuk can be built from the functionsCi.

B. Mathematical derivation

In mathematically formulating the problem, we wish to find an approximate so
of the problem:sKfdsxd=gsxd, wheregsxd is a given function. The approximate solut
is defined as the approximation of the true solutionf by expanding it into a finite serie
of functionsCk:

f̃ = o
k=0

p−1

akCk,

whereCk is a set of orthonormal independent functions, with a finite supportsCk takes
nonzero values on a finite intervald and indexed byk,p is the number of functions need
to approximatef, andak=kf ,Ckl. The bracketskf ,Ckl are a shorthand notation stand
for the scalar product of the functionsf and Ck, defined as follows:kf ,Ckl
=eDfsxdCksxddx, the integration being made on an intervalD se.g.,R or the interval ove

which Ck is definedd.
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446 CHRISTOPHE ANCEY
We denote the image ofCk by vksxd=KCksxd. We also introduce the adjoint of t
operatorK, denoted byK* . The adjoint operator is defined in such a way that:kKa,bl
=ka,K*bl for any functiona or b. After basic integral computationssintegration by partsd,
it can be shown that the adjoint operator is

sK*gdsxd =
1

2x
E

x/b

x

gsyddy. s4d

If we can find a dual functionuk such thatCk=K*uk, then we obtain the biorthog
nality relationship

kui,v jl = di j .

Indeed we havekui ,v jl=kKCi ,v jl=kCi ,K
*v jl=kCi ,C jl=di j . We are trying to solve th

approximate inverse problem

Kf̃ = o
k=0

p−1

akvk = g.

Multiplying by function uk and integrating overR, we obtain the reproducing formula

f̃ = o
k=0

p−1

kKf̃,uklCk = o
k=0

p−1

kg,uklCk. s5d

Consequently the key step in the treatment is to find the dual function basissukd0økøp−1.
It can be shown that the dual basis can be obtained by posing

uksxd = − o
i=0

`
1

bi Uk8S x

biD , s6d

whereUksxd=xCksxd. Indeed, fori =0, using an integration by parts, we obtain

kKC jsxd,− Uk8sxdl = − fKC jsxdUksxdg−`
+` +E

−`

+` SC jsxd
x

−
C jsbxd

x
DxCksxddx.

SinceCk has a finite supportfimplying KC jsxd=0 whenx→ ±`g, we obtain

kKc jsxd,− Uk8sxdl = d jk −E
−`

+`

c jsbxdCksxddx= d jk −
1

b
E

−`

+`

C jsxdCksx/bddx.

Repeating the procedure fori .0, we can show thatkKc jsxd ,uksxdl=d jk. When taking the
inner product with any functiong such thatg=Kf, the convergence is ensured h
becauseb,1,gs0d=0, andg8s0d is finite; indeed, we have

b−ikgsxd,Uk8sb
−ixdl = kgsxbid,Uk8sxdl < bikg8s0d,Uk8sxdl + Osbid,

when i is sufficiently large. Asymptotically, we find thatb−ikgsxd ,Uk8sb
−ixdl behaves like

bi, implying thatkKc jsxd ,uksxdl converges to a well-defined limit.
When coping with irregular functions or when interested in obtaining sparse rep

tations of functions, it is advantageous to use wavelet functions for the orthonorma
Ck. Another advantage in using wavelets is that the convergence rate and an esti
the error made in expanding the solution into a wavelet series can be determ
advancessee the EPAPS documentd. When wavelet functions are used, the dual b

functionsui are calledvaguelettesby Donohos1995d because they present properties that
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447SOLVING THE COUETTE INVERSE PROBLEM
are very close to properties exhibited by wavelets. In the following, we will us
so-called Daubechies D8 wavelets forCk, but alternative choices can also be m
without significant changes in the final result.

C. Numerical implementation

The numerical implementation of the method is reasonably simple since it inv
computing the inner productskvstd ,ukstdl. Several commercial productssMathematica
Mathlab, etc.d allow such computations. For numerical purposes, it is convenient t
dimensionless variables. We can take dimensionless variables by definingv=Vvmax, ġ
=Gvmax, and t=Ttmax, wheretmax and vmax denote, respectively, the maximum sh
stress and rotational velocity. The dimensionless operator has the same form
original

VsTd = sKGdsTd =E
bT

T Gsjd
j

dj, s7d

but it is defined for functions taking their values onf0, 1g instead ofR. A Mathematica
program doing the numerical calculations is included in the EPAPS document
program includes both WVD decomposition and Tikhonov’s method.

In practical situations, functionVsTd must be evaluated from data, e.g., by us
interpolation techniques such as the kernel method or wavelet regressionfHart s1999d;
Kovac s1998d; Wahbas1990dg; the inner products can then be computed by nume
integration of this interpolating curve.

Computation time and convergence can be accelerated; instead of solving the p
Eq. s7d, we can solve the problem

VsTd = sKGdsTd =E
bT

T

Lsjddj, s8d

whereLsjd=Gsjd /j. In this case, the dual vector isui =−Sk=0
` b−kCi8sb

−kxd; thus, in de
termining the inner productkVsTd ,uksTdl, the trick is to computekVsTd ,Ci8sTdl, whereas
in the original problem,kVsTd ,xCi8sTd+CisTdl must be computed.

The inner product involves the dual vectorsui, defined from an infinite seriesfsee Eq
s6dg. In practice, the series is truncated whenbi is small enough. Typically, forb=0.5,
keeping the first ten terms of the series is sufficient to ensure an accuracy of 10−3.

When the material is viscoplastic, the shear rate is nonzero only for a shear s
excess of the yield stresstc. As a consequence, some authors replace the lower boubt
in Eq. s2d with tc fNguyen and Bogers1992d; Yeow et al. s2000dg. In the numerica
computations, this replacement may increase accuracy and avoid problems of va
shear rates, but this also implies that one of the integration bounds is not known an
be determined separately or iterativelyfe.g., see Yeowet al. s2000dg. A clear advantage o
the method presented here is that the wavelet functions are specifically desig
capture possible discontinuities and consequently it is not necessary to modify th
gration bounds. Note that, when using the Tikhonov regularization technique, it i
sible to keep the integral boundaries unchanged by writing

vstd =
1

2
E

tc

t ġsSd
S

dS=
1

2
E

bt

t ġsSd
S

HsS− tcddS,
whereH denotes the heavyside function.



n in a

set
ss

lies

rate is
entire

ith an
d
no
32

ze
in
curve

xima-
.

448 CHRISTOPHE ANCEY
D. Numerical example

For the numerical test, let us consider the following Casson constitutive equatio
dimensionless form

ÎT = ÎTc + ÎG, s9d

where Tc is the dimensionless yield stress. For numerical applications, let usTc

=0.1. Computations are made over the intervalf0, 1g. The corresponding dimensionle
torque per unit height is

VsTd = 50 for T , Tc,

T − Tc − ÎTTc + 4Tc + TclnsT/Tcd for Tc ø T , bTc,

Tc − bT + 4ÎTTcsÎb − 1d − Tclnb for T ù bTc.
6 s10d

We use the Daubechies D8 father waveletsf. To represent functions whose support
within f0, 1g, p=78 wavelets are needed; we usesCkd1økø78=hf6,−14,f6,−13,¯ ,f6,63j.
We denoteG̃ the approximate dimensionless shear rate. The recovered shear
reported in Fig. 1. Note the perfect reconstruction of the shear rate over the
interval. The mean-square error is approximately 1.219 65310−9 vs 1.216 75310−9

when G̃ is computed from the exact function.
Similar tests were carried out by replacing the exact dimensionless torque w

interpolating polynomialspiecewise polynomial of order 3d fitting nd=100 data compute
from Vsidd, for i =0,… ,nd−1 andd=snd−1d−1. Very good agreement was found, with
difference to the naked eye with the exact flow curvesmean-square error 1.296 9
310−9d.

In parallel, we used the Tikhonov method as described infYeow et al. s2000dg; we
used the same set ofnd simulated dataVsiDd, nk=200 interpolation points to discreti
the integral term in Eq.s7d and a smoothing parameterl=10−6. The result is reported
Fig. 2sad. Good agreement was also found for this method between the exact flow

FIG. 1. Flow curve for thesdimensionlessd Casson model. The solid line represents the numerical appro
tion obtained by using the WVD approach, whereas the dashed line represents the exact solution Eqs9d.
and the recovered curve, but the mean-square error is substantially larger than for the
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449SOLVING THE COUETTE INVERSE PROBLEM
WVD approachs2.52310−6 vs 1.29310−9d. The main difference between the two me
ods lies essentially in the bias between the exact flow curve and the reconstructed
As shown in Fig. 2sbd, the differenceDG between the recovered value and the exact s
rate is very close to zero for the WVD method apart from the yielding point atT=0.1,
whereas it is systematically below zero for the Tikhonov method and increase

FIG. 2. sad Flow curve for thesdimensionlessd Casson model when Tikhonov’s method is used; the solid
represents the numerical approximation obtained by using the Tikhonov approach, whereas the da
represents the exact solutionfEq. s9dg. sbd Difference between the computed and the exact shear ratessbiasd as
a function of the dimensionless shear stress: WVD approachssolid lined vs Tikhonov methodsdashed lined.
increasing stressT.
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450 CHRISTOPHE ANCEY
IV. APPLICATION TO REAL CASES

A. Raw data

We have applied both the WVD inverse method and Tikhonov’s regularization
nique to two series of data available in the literature.

• Baudezet al. s2004d investigated the rheological properties of a polymeric suspe
scommercial hair gel made of Carbopold using a stress-controlled Paar Physica M
+ rheometer equipped with a Couette geometrysR1=1.25 cm andb=0.26d. In addition
they carried out velocity-profile measurements in a similar geometrysR1=4 cm and
b=0.44d using magnetic resonance imagingsMRId techniques. Further rheometric
tests were also done with a Bohlin CVOR200 rheometersR1=0.0125 cm andb
=0.06d. Carbopol suspensions usually exhibit a viscoplastic behaviorfRoberts an
Barness2001dg. MRI techniques made it possible to obtain an accurate estimati
the flow curve and then to compare the different methods.

• Ancey s2001d studied the rheological behavior of granular suspensions using a
mounted on a Haake Rotovisco MV5 rheometersR1=3 cm andb=0.09d; the sheare
height wash=32 mm sdifferent heights were also testedd. The tested suspension w
made up of glass beadssdiameter 0.8 mmd in a 98.5% water/glycerol solution at t
solid concentration of 60%svery close to the maximal solid concentrationd. Such
suspensions exhibit a complicated behavior depending on the shear rate: a fr
Coulombic behavior at low shear ratesslike a granular soild and viscous behavior
high shear rates.

The data obtained by Baudezet al. s2004d and Anceys2001d are reported in a log
linear plot in Fig. 3. They were slightly noisy and a specific procedure was us
denoise and interpolate the raw data. Different nonparametric regression techniq
be used for this purpose: kernel estimatorfHart s1999dg, spline smoothingfWahba
s1990dg, Fourier series estimator, wavelet regression and shrinkagefCai s1999, 2002d;
Donoho and Johnstones1995d; Kovac s1998dg, Bayesian inferencefWerman and Kere
s2001dg, etc. There is not a universal method because, depending on the noise le
number of data, and the properties of the function to be recovered, the performa
each method in terms of denoising efficiency can vary significantly. Here, because
small size of the data samples, the optimized Gasser–Müller kernel methodsincluded in
the Mathematica packaged was used to denoise and interpolate the datahfor details in the
implementation, seefHart s1999dgj. The resulting interpolating curves are plotted
Fig. 3.

B. Results

Figure 4 shows the flow curves deduced by the Tikhonov regularization m
sdashed lined and the wavelet-vaguelette decomposition methodssolid lined for the poly-
meric gel and the granular suspension. For the Tikhonov method, we used the
described infYeow et al. s2000dg with nk=400 discretization points and a smooth
parameterl=2310−6 and 5310−6 for the polymeric gel and the granular suspens
respectively. For the WVD method, Daubechies D8 wavelet and the functional for
tion were usedssee Sec. IIId.

For the polymeric gel, it was possible to independently obtain a reference flow
by using the velocity profile determined by Baudezet al. s2004d using MRI techniques
Indeed, in a Couette geometry, the shear stress distribution across the gap is im

2
tsrd=M / s2pr d; the shear rate can be computed by differentiating the velocity profile
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451SOLVING THE COUETTE INVERSE PROBLEM
vsrd : ġsrd=−r ] sv / rd /]r. Reporting a parametric plotfġsrd ,tsrdg as a function of th
radial distancer makes it possible to have a clearer idea on the flow curve for the ma
tested. The dots in Fig. 4sad represent the flow curve determined in this way.

For the polymeric gelfsee Fig. 4sadg, the three methods compare well over a shear
range covering approximately two orders of magnitudes5310−2øġø20 s−1d, whereas
differences can be observed at low and high shear rates. Because of the sm
constraint imposed on the flow curve in the Tikhonov method, the shear stress
quickly at low shear rates, leading to an underestimation of the yield stresssestimated a
41 Pa using independent testsd. Similarly, at large shear rates, the slight convexity of
flow curvesin a log-linear representationd leads to an undue increase in the shear st
Because of the absence of regularization constraint in the WVD method, the corre
ing flow curve comes closer to the experimental flow curve inferred from MRI mea

−3

FIG. 3. sad Raw data obtained by Baudezet al. s2004d for a polymeric gelsCarbopold. sbd Raw data obtaine
by Ancey s2001d for a granular suspension. Dots correspond to data while the solid lines represent th
interpolating the data obtained using the Gasser–Müller kernel methodfbandwidth parameter taken at 0.1sad
and 0.05sbdg.
ments. We can, however, notice the bump for shear rates in the range 10–5
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310−2 s−1, which seems not natural. This is probably an artifact caused by the in
lating curvefsee Fig. 3sadg since a similar bump is also observable. Additional rotatio
velocity data are required to improve accuracy in the low-shear-rate limit.

For the granular suspension, substantial differences appear between the flow
deduced using the Tikhonov and WVD methods. At first glance, the WVD flow c
shows an unrealistic wiggly behavior while the Tikhonov flow curve seems more re
and to smooth out the shear-stress oscillations seen in the WVD curve. The b
exhibited by the WVD solution can be understood by reminding the main traits o
bulk behaviorfAncey s2001dg.

• At low shear rates, the granular suspension exhibited a frictional Coulombic beh

FIG. 4. sad Flow curve for the polymeric gel.sbd Flow curve for the granular suspension. Insad, the dots
represent the flow curve obtained by differentiating the MRI velocity profile. The dashed lines repres
flow curves obtained using the Tikhonov methodfsmoothing parameterl=2310−6 and l=5310−6 for flow
curvessad and sbd, respectivelyg. The solid lines represent the flow curve determined using the WVD me
i.e., a shear-rate independent shear stress, which was linearly linked to the normal
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453SOLVING THE COUETTE INVERSE PROBLEM
stress; shear was localized within a narrow cylindrical band around the vane,
typical size was a few diameters.

• At large shear stress, the suspension behavior was closer to a Newtonian b
sM ~V and t independent of the normal stressd; all the space between the vane
outer cylinder was sheared.

This regime transition was interpreted as a consequence of contact lubrication b
particlesfAncey s2001dg. As seen in Fig. 3sbd, the transition between the two regim
occurred at approximatelyV=0.4 rad/s. Since the typical thickness was of the orde
5–10 particle diameters, i.e., 4–8 mm, we deduce that the critical shear rate
transition was of the order ofġc=0.0330.4/s4310−3d=Os2ds−1. When contacts betwee
particles were lubricated, the shear-band thickness rapidly grew to finally occupy
available space, leading to a progressive decrease in the shear rate. If the expansi
sheared region were instantaneous at the transition, the shear rate should have dr
a minimum value, whose order of magnitude isġm=0.0330.4/0.1=Os0.1ds−1.

Taking a closer look at the WVD solutionfsee Fig. 4sbdg, we observe that, for lo
shear stressesst,50 Pad, the flow curve is approximately horizontal for shear rate
the range 0.1–4 s−1. At ġ=4 s−1 sclose to the order of magnitude found forġcd, a slight
increase in the shear stress leads to a substantial decrease in the shear rate, wh
to 1 s−1; this value is much higher than the value ofġm, but this is normal sinceġm has
been estimated by assuming a sudden expansion of the sheared zone. For high
stressst.80 Pad, the shear stress varies almost linearly with increasing shear rate

Variants of the WVD decomposition and interpolation techniques were used, b
came to similar conclusions. In brief, although, at first sight, it was a bit unrealisti
behavior exhibited by the WVD solution can be convincingly explained by analyzin
bulk behaviorhreflected in the scaling behavior ofMsV ,hd shown infAnceys2001dgj and
interpreting it in terms of particle behavior. For the same reason as for the polyme
the Tikhonov solution smooths the flow curve bulges, thus it compares well wit
WVD solution only at very low and large shear ratessġ,1 s−1 or .6 s−1d.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper we have shown that the wavelet-vaguelette decomposition ma
possible to recover the shear rateġ from the rotational velocityvstd by using a wavele
representation

ġstd = o
k

gkCkstd,

where Ck is a wavelet basis andgk=kvstd ,ukl with the vaguelette functionukstd
=−okb

−kftCkstdg8sb−ktd. Wavelet bases offer accurate and sparse representatio
functions whatever their regularity. Therefore, for most cases encountered in rheom
is possible to reconstruct the shear rateġ from the rotational velocityv without using
additional assumptions on the smoothness ofġ, as in Tikhonov’s regularization. Anoth
advantage offered by the WVD approach is that, fundamentally, very high accura
be imposed in advance when reconstructing the shear rate by an appropriate sele
the wavelet basis and the number of elements used in the wavelet representation
tional methods such as Galerkin methods or the regularized least-square approac
lead to such a high degree of accuracy and adaptivity unless specific iterative pro

are used to improve the initial results.
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When the rotational velocity is a noisy signal, it is possible to remove a large p
the noise by shrinking the wavelet coefficients or smoothing the data.

• Donoho s1995d and Cai s2002d showed that if the shrinkage threshold is prop
chosen, then the WVD solution converges toward the “better” solution at the o
rate. This optimal rate is, however, quite low and thus in practice, a large num
datastypically as large as 29d are needed to offset this slow convergence.

• In practice, when the data number is small, alternative regression techniques
the spline interpolation or the kernel estimator must be used. Here, the opt
Gasser–Müller kernelhsee fHart s1999dgj method was successful in denoising
interpolating experimental data.

In other methods such as the regularized least-square method, noise is smoo
when regularizing the solution. In a sense, this procedure is more robust and le
hungry because additional assumptions on the smoothness ofġ are used, but it introduce
a bias between the exact solution and the regularized curve, which can lead to sig
estimation errors in some pathological cases. An exemple has been provided in
with a highly concentrated granular suspension.

We have developed two formulations of the wavelet-vaguelette decomposition
tinuous and discrete formulations.

• In the continuous case,vstd must be a function, evaluated by interpolating data
satisfyingvs0d=0 andv8s0d=c, wherec is a constant for the inner products to c
verge. Numerical computation of the inner productsgk=kvstd ,ukl can be time consum
ing, especially whenb is close to unity, because the vaguelette functions compri
infinite series of terms. In principle, any degree of accuracy can be achieved
WVD decomposition by altering the numberp of wavelets and vaguelettes used in
computationsssee the EPAPS documentd, but in practice, there are some restriction
the maximum achievable accuracy because interpolating functions are used.

• In the discrete case,w=vstid is a data vector. To some extent, the discrete formula
can be seen as the discretized version of the continuous WVD decomposition, si
discrete vaguelette is a vector whose points can be interpolated by the corresp
continuous vaguelettessee the Appendixd.

In summary, the new method developed here is an interesting alternative to trad
methods such as the Galerkin and Tikhonov methods because it offers greater a
This point is of great importance because a number of materials currently invest
notably in the field of suspensions, exhibit particular properties, including rapid c
behavior in the flow curvehe.g., in glass-bead/glycerol suspensionsfAncey s2001dg,
clay-water dispersionsfCoussots1995dg, etc.j, discontinuous shear rate distribution at
yielding pointfRaynaudet al. s2002dg, giant fluctuationsfLootenset al. s2003dg, etc. For
such materials, the additional assumptions used in the traditional methodsssuch as th
regularization procedure in the Tikhonov methodd may lead to unrealistic results. Typic
exemples have been provided in Sec. IV.

The wavelet-vaguelette approach is also interesting becausesid it allows us to contro
the solution accuracy and convergence andsii d it can be combined with an optim
denoising procedure when data are noisy. Its main drawback lies in the numerical
mentationsnumerical integration needed until faster algorithms are availabled and the
computation time that can be much longer than for traditional methods. This ap
probably clears the way for other methods that will combine the accuracy and ada

of wavelets and the versatility and easiness of Galerkin methods.
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APPENDIX : DISCRETE FORMULATION WAVELET-VAGUELETTE
DECOMPOSITION

A. Principle

Here we consider an alternative formulation of the wavelet-vaguelette decompo
where the discrete nature of experimental data is directly taken into account. We
that we haven data vi =vstid. The objective is to deduce the shear rate from
rotational-velocity measurements.

To that end, we introduce the discrete operatorKn that mapsL2sRd to Rn, whereL2

represents the space of functions that are square integrable, and its adjoint operKn
* :

Kn:fsxd → y:yi = sKfdsxid =E
bxi

xi fszd
z

dz, 1 ø i ø n,

Kn
* :y = syid1øiøn → hszd = o

i=1

n
yi

z
Hfsxi − zdsz− bxidg,

whereH denotes the heavyside function. The shear rate is related to measurem
vi =sKnġdstid.

As previously, we consider the approximate solution to the inverse problemKnf =y by

using a truncated wavelet series for the function to be determined:f̃ =oi=0
p−1akCk, where

Ck is a set of pairwise orthogonal, independent functions. The image of a basis fu
Ck is denoted byek=KnCk, i.e., a vector inRn sthe same holds for the dual basisd. We are
seeking a dual basis or vagueletteẽj such thatfẽj ,ekg=0, where the square brack
denote the scalar product inRn. From the relation

fei,ẽkg = fKnCi,ẽkg = kCi,Kn
* ẽkl = dik,

we deduce thatCi and Kn
* ẽk are parallel. In other words, a factorzi exists such tha

ziCi =Kn
* ẽi. It follows that:

ai = kf,Cil = kf,zi
−1Kn

* ẽi jl = zi
−1fKnf,ẽig.

An estimate of the wavelet coefficientai is obtained by replacingKnf by y :ai =kf ,Cil
<zi

−1fy ,ẽig.
Different methods can be used to determine the dual basisẽi. Let us callP the n3p

matrix, whosekth column is the vectorek. Similarly, Q denotes then3p matrix, whose
kth column is the vectorẽk. The first approach to obtain the biorthogonality rela
between the bases is to findQ such thatPQ* =1n, where1n is then3n identity matrix,
but the matrixP is poorly conditioned and its numerical inverse can include signifi
roundoff errors. Another approach is to directly use the definition ofẽk; indeed, from
ziCi =Kn

* ẽi, we deduce that:ziei =sKnKn
*dẽi. TheGram matrixM n of the operatorKnKn

* is
usually well conditioned, it is symmetric and can be inverted. We can then defiẽk

−1
=M n ek; note that here, by construction, we havezk=1.
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Returning to our rheometry problem, we find that an estimate of the shear
obtained by computing from a set ofn dataw=v1,v2,… ,vn:

g̃̇std = o
i=1

n

fw,ẽigCistd. sA1d

B. Numerical implementation

The numerical implementation requiressid the selection of a representation forġ ssee
the EPAPS documentd and the definition of the basisCi, sii d the computation of th
imagesei =KnCi and the resultingn3p matrix P, siii d the computation of then3n Gram
matrix M n, sivd computation of the dual vectorsẽi, andsvd computation of the shear ra
fEq. sA1dg. Note that stepssid–sivd are independent of measurements and can be
oncesfor a given radius ratiobd. The matrixP must be calculated numerically. The Gr
matrix M n can be computed analytically since its entries are given by

Mij =E
R

dx

x
Hfsx − btidsti − xdgHfsx − bt jdst j − xdg = lnSx2

x1
D ,

where fx1,x2g=fbti ,tigù fbt j ,t jg. The Gram matrix is usually well-conditioned ev
though many entries are zero. It can be inverted easily by the usual methods.

C. Numerical example

We consider the same example as in Sec. III D. We considern=100 data compute
from Eq.s10d, w :vi =VsTid, whereTi = id for 0ø i øn−1 andd=sn−1d−1. The shear rat
is sought in terms of a multiresolution wavelet seriesssee the EPAPS documentd. As
previously in Sec. III D, we use the Daubechies D8 wavelets and we takeb=0.5. Figure
5 shows the recovered dimensionless shear rate when D8 wavelets are used wip=16
sad, p=32 sbd, andp=128 scd.

As seen in Fig. 5sad, there is a satisfactory agreement between the recovered and
shear rates for a fairly small number of waveletssp=16d, but this agreement is poor at t
boundaries; this problem results from the use of periodized waveletsssee the EPAP
documentd. Interestingly, increasing the wavelet numberp reduces the problems encou
tered at the boundaries, but also causes new problems: forT<0.5, a small bump deform
the retrieved flow curve forp=32 fsee Fig. 5sbdg. Still, increasing the number of wavele
aggravates this problem, as shown on panelscd of Fig. 5: the bump is replaced by a ser
of wide oscillations. Typically, increasingp here leads to the mean-square error ri
s7.23310−5 from 1.25310−4 to 1.25310−4 whenp is increased from 32 to 128d. There
is also a typical distance separating the oscillations, which is controlled by the
ratio b. For instance, on panelscd, the first oscillations are localized aroundT<0.5, the
second close tob30.5=0.25, the third tob230.5=0.125, and so on in a geometri
progression.

The reason for these shortcomings stems from the fact that, from the analytica
point, the dual functionui involves an infinite series of increasing terms, but its disc
counterpartẽi is unable to mimic the behavior of higher terms in this series. To illus
this more clearly, let us consider an example by examining what happens for high
vaguelettes. In Fig. 6, we have plotted the dual functionu4,8 sdashed lined associated wit
the waveletC25=c4,8 and its discrete counterpartẽ25; only the first four terms in th
infinite seriesu4,8 fsee Eq.s6dg have been reported for the plot to be readable. Forx in the

˜
range 0.2–1, there is reasonably good agreement between the discrete valuese25 and the
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FIG. 5. sad Flow curve for thesdimensionlessd Casson model whenp=24=16 wavelets are used to represenġ;
the solid line represents the numerical approximation obtained by using the discrete WVD approach,
the dashed line represents the exact solutionfEq. s9dg. sbd Flow curve whenp=25=32 wavelets are used.scd
Flow curve whenp=27=128 wavelets are used.
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dual functionu4,8: points fall onto the first two oscillations corresponding toU08sxd and
b−1U8sb−1xd in the infinite seriesfsee Eq.s6dg. The third oscillation corresponds
b−2U8sb−2xd; its support is much narrower and its amplitude larger than the two pre
oscillations; the points do not capture all the oscillations. The only way for the vectẽ25

to mimic high-order terms ofu25 would be to substantially increase the point density,
the measurement numbern.

In short, the discrete WVD decomposition can provide results in fairly good a
ment with datasexcept for the boundaries where spurious oscillations are induce
cause of the use of periodized waveletsd. Increasing the accuracy of the reconstru
shear-rate requires substantially raising the measurement number for the d
vaguelette to mimic the continuous-vaguelette behavior. Its advantage is less o
compared to Tikhonov regularization and the continuous formulation of the WVD
composition even though, with modern rheometers, taking a large number of me
ments is rather easy.
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