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Synopsis

This paper develops a new approach to computing the shear rate from the torque and rotational-
velocity measurements in a Couette rheometer. It is based on wavelet-vaguelette decomposition
(WVD) proposed by DonohpDonoho, D., Appl. Comput. Harmon. AnaR, 101-126(1995].

This decomposition consists in expanding the shear rate into a truncated wavelet series, whose
coefficients can be determined by computing the inner products of the wavelet functions with dual
functions (vagueletté Compared to other strategies used for recovering the shear rate such
as Tikhonov regularization, the WVD method exhibits greater accuracy and faster convergence.
Because of the spatial adaptivity of wavelets, it still performs well when the flow curve is irregular
(yield stress, sudden behavior change, )eand thus no prior knowledge of the shear

rate characteristicge.g., existence of a yield stress, smoothpeiss needed. Its efficiency

is demonstrated by applying the method to two fluis polymeric gel and a granular
suspension © 2005 The Society of RheolodyDOl: 10.1122/1.1849181

I. INTRODUCTION

A longstanding problem in rheometry is the so-called Couette inverse problem, in
which one tries to derive the flow curv&y) from the torque measuremen® ) in a
coaxial cylindern(Couetté rheometer, where is the shear stress,denotes the shear rate,

w is the rotational velocity of the inner cylinder, ah represents the torque per unit
height[Colemanet al. (1966 ]. The shear stressexerted on the inner cylinder of radius

R, can be directly related to the measured tordieby 7=ca;M, with a;=1/(27R?),
independently of the form of the constitutive equation. The shear rate is related to the
rotational velocityw by

R :
w:f &dr, (1)

Ry T

whereR, denotes the outer-cylinder radius and it is assumed(thtie rotational veloc-

ity of the outer cylinder is zero an) there is no slip between the inner cylinder and the
sheared material at=R;. In order to recover the flow curve from measurements of the
rotational velocityw(M), one must be able to
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(i) relate the functiony(r) to =(r);
(i) find out a means of inverting the integral relationstiy and
(iii) estimate the continuous functiorr) from a set of discrete valuds;, M;).

For a broad class of fluidsimple fluidg, the first step is systematically achieved since
there is a one-to-one relation between the shear stress and the shear rate for steady
viscometric flows:y=%(7). Moreover, the momentum equations imply that the shear
stress distribution across the gap is givenog) =M/ (27r?)=7(R,/r)?, wherer denotes
the distance from the vertical rotation axis of the cylinders. Under these conditions,
which are not too stringent, it is possible to make the variable chaaggy /S in the
earlier integral; we then derive the well-known equati@olemanet al. (1966, Krieger
and Elrod(1953]:

1S
Mﬂ—sz S ds )

where 8=(R;/R,)?. The next step is to recover from w(7).

Although this problem admits an analytical theoretical solution in the form of an
infinite seried Colemanet al. (1966, deriving the shear rate remains a difficult task in
practice because the derivation enters the class of ill-posed prolpfmasrich et al.
(1996]. In rheometry, the first attempt at solving E®) can be attributed to Mooney
(1932, Krieger and Maron(1952, and Krieger and Elrod1953. When g is close to
unity, it is possible to directly approximate the integral to the first order by

o)=Ly 4oy,
When g moves away from unity, further terms are needed in the expansion of the integral
into a B series. Although refined to achieve higher accufa@ng and Kriegef1978],
Krieger's approach was unable to provide reliable results for viscoplastic floarby
(1985, Nguyen and Bogef1992] or for data contaminated by noifBorgia and Spera
(1990]. Alternative methods have been proposed: Tanner and Willia8i&) developed
an iterative procedure, whereas Macsporta®89, Yeow et al. (2000, and Leong and
Yeow (2003 used a regularized least-square approach, which involves discretizing the
integral term and regularizing it.

These methods are very efficient for a wide range of well-behaved rheological equa-
tions. However, when the rheological behavior exhibits singularities such as yield stress
or a rapid shear thickening, the regularization procedure can lead to unrealistic results by
smoothing out the singularities or to complicated trial-and-error loops. For instance,
when testing Tikhonov's method with viscoplastic flows, Yeetval. (2000 had to
evaluate the yield stress iteratively, which may involve a large number of computations
and slow convergence. This undesired behavior is to a large extent the result of attempt-
ing to evaluate a continuous functipi(7)] from a finite set of discrete values represent-
ing measurements of bulk quantities. This task is more delicate than believed, especially
when data are noisy. For a well-behaved rheological equation, imposing a certain degree
of smoothness in the regularization procedures does not entail many problems. On the
contrary, for complex rheological responses, it becomes increasingly difficult to discern
genuine rheological properties, noise effects, and discretization errors.

The objective of this paper is to propose a new method for recovering the shear rate
from the functionw(7), which is numerically stabléno noise amplificationand can deal
with irregular functions. The basic idea is to approximate the solution using a finite series
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of properly selected functions. We will then show how to invert the integral Baqusing

specific properties of this equation. In applied mathematics, a large number of function
families are used to approximate functions, e.g., Legendre polynomials, Chebyshev poly-
nomials, trigonometric function@ourier expansion etc., but when the function to be
approximated is highly nonlinear or exhibits singularities, the expansion may need an
infinite number of terms to be accurate. In that case, it is advantageous to use wavelet
functions because these functions have been designed to provide sparse representations of
regular and irregular functiond.ouis et al. (1997)]. Although they are not the corner-

stone in the derivation of the method, wavelet functions turn out to be an essential
ingredient when applying the method to real data.

The approach developed here takes its roots in a more general mathematical theory
referred to as thedjoint-operator methogroposed by Golberg1979 and one of its
recent extensions calleslavelet-vaguelette decompositioWVvD). This theory was de-
veloped by Donoh@1995 to solve certain classes of inverse problems. Perhaps because
of its lack of versatility and the mathematical difficulties arising in its implementation,
little research has attempted to apply this technique to solve inverse problems in practical
situations{e.g., Kolaczyk(1996 in tomography andChampier and Grammoii2002)]
for particle-size distribution In this paper, we will focus on recovering the shear rate
from the rotational-velocity measurement in practical cases, whatever the irregularity of
the constitutive equation.

Section Il will present the different mathematical approaches used so far to solve
inverse problems such as the Couette problem. This will help to situate the approach
presented here with respect to other techniques. Two formulations of the WVD method
will be outlined:

« a continuous formulatioSec. Ill), in which the rotational velocity is a given continu-
ous function. In practice, this means that the measurententl;) are interpolated to
provide a smooth function assumed to give a correct representation of the function
(7). In this way, we separate problertis) and (iii) earlier; and

« a discrete formulatioriSec. A in the Appendix where the only information we have
are measurements of the rotational velocity. In the same process, we are trying to invert
Eq. (2) [problem(ii)] and infer the local relationshijp(7) from a finite set of measure-
ments taken on the macroscopic scale, M,) [problem(iii)].

In Sec. IV, we apply the WVD method to two fluida viscoplastic polymeric gel and
a granular suspension exhibiting an unusual rheological behadad we show its
efficiency in recovering the flow curve compared to the regularized least-square method
(Tikhonov’s methodl The mathematical proofs and a Mathematica package for rheomet-
ric applications are available as an EPAPS document; see the Reference section for the
details.

Il. MATHEMATICAL STRATEGY

In the Couette inverse problem, E) can be represented in the generic form:
o(7)=(Ky)(7), whereK is the integral operator

(Kf)(2) = ‘ L)z()dx, (3)

Bz

with B a constant parametéB8<1). A considerable body of literature has been published
over the last three-decades on ill-posed inverse problems in this [fBemteroet al,
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(1985, 1988, O'Sullivan (1986, Tenorio(2001)]. Schematically, we can split the various
methods for solving Couette-like problems into three main categories.

* Least-square approaclinstead of solvingn=K?y, an attempt is made to minimize the
residual|w—K?4/|, usually with an additional constraint on the norm|éf or its de-
rivative(s), to control the smoothness of the solution. Tikhonov’s regularization method
used by Yeowet al. (2000 and Landweber’s iterative procedure used by Tanner and
Williams (1970 come within this category. The advantages of this method are its
robustness against computation inaccuracies and measurement errors, its versatility, its
fast convergence when the function to be recovered behaves reasonably well, and the
relative facility of its implementation. The drawbacks are that it relies on an arbitrary
selection of the regularization operat@ven though specific procedures have been
establishegdand its limited capacity to retrieve irregular functions.

» Projection approachthe idea here is to discretize the problem by projecting the func-
tion over a finite space spanned by a family of functions enjoying specific properties
(such as orthogonalijyu;. Equation(2) is then replaced by the finite set of equations
(Ky,upy=(w,u) for 1<i=<p, where(f,g)=[f(x)g(x)dx denotes the inner product in
the function spacé¢Dicken and Maas$1996), Louis et al. (1997, Rieder(1997].
Galerkin’s method, used by Macsporréi®89 with spline functions, provides a typi-
cal example for Couette rheometry. Irregular functions can be recovered by these
methods provided appropriate projection functions are chosen in advance.

» Adjoint operator approachfor many reasons, it is usually either not possible or not
advantageous to compute the inverse operéfdr In some cases, however, it is pos-
sible to provide a weak inverse formulation, in which the functiois expressed as

y= §<K'y,ui>llfi,

where the summation is made over a$gb; is an orthonormal basis of functions, and
u; denotes a family of function solutions of the adjoint probl&iu;=W¥;, whereK" is
the adjoint operator oK [Golberg(1979]. Typical examples includsingular-value
decompositiofiBerteroet al. (1985, 1988|, a generalized formulation based @&ton-
struction kernelqLouis (1999], wavelet-vaguelette decompositifidlonoho (1995],
andvaguelette-wavelet decompositiphbramovich and Silvermaii1998]. The solu-
tion to the inverse problem is found by replacikg with » in the equation earlier and
filtering or smoothing the inner product&y,u;) and/or truncating the sum.

This partitioning is a bit arbitrary because there are interconnections between the three
categoriege.g., Tikhonov's regularization can be viewed as a special case of singular-
value decompositiofBerteroet al,, (1988]}. This is, however, sufficient in the present
paper to outline the main approaches used so far and to situate the previous attempts at
solving the Couette problem. Alternative methods, e.g., stochastic mdiGadsboa and
Gassial(1997; Mosegaard and Sambrid¢®2002], are also possible, but have never been
used in rheometry as far as we know.

Here we will develop a strategy based on wavelet-vaguelette decomposition. The
wavelet functions are orthonormal functions generated from dilations and translations of
a special function, called theother wavelet/ (see the EPAPS document for an intro-
duction to their useful properties or any textbook on wavegletsl associated with an-
other function called thdather waveletor the scaling function¢. One of their most
interesting properties is that, for some classes of mother wavelet such as Daubechies
wavelets, it is possible to know the convergence rate and the accuracy of the solution in
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advance. A large part of their success lies in their spatial adaptivity: contrary to other
families of orthogonal functiond_egendre, Chebyshev, trigonometric, gtavavelets are

well localized and scale-dependent, which makes it possible to provide sparse represen-
tations of regular and irregular functions.

Ill. FUNCTIONAL FORMULATION OF WAVELET-VAGUELETTE
DECOMPOSITION

A. Principle

We will begin by exposing the principle in a very simple manner. A more rigorous
mathematical derivation follows. Let us assume that we can approximate any shear rate
function y(7) with a finite series of terms

W) = g a¥y(7),

where ¥, denotes thekth member of a family of orthogonal functions, i.e.,
TV (D)W (7)d7=8y; making use of this property, we could compute the coefficiapts
a.=[y(7)¥,(7)dr if the function y(7) were known.

Using the linearity of the integral operatkr, we have

(1) = (Ky)(1) = % a (KW (7).

Note that the functiornw(7) shares the same coefficierdg as the shear-rate function,
implying that if we were able to expanadl7) into a(KW,) series, we could determine the
coefficientsa,, then find an approximation of(7).

Unfortunately, the function$KW¥,)(7) are not orthogonal, making it difficult to nu-
merically computen,. Specific procedures such as the Schmidt orthogonalization proce-
dure could be used to derive an orthogonal family of functions ft&nl,)(7), but here
this involves overly complicated computations. We will envisage another technique based
on dual bases. A dual basis of the function b&ki¥,) is a set of functions); such that
Ju (DKW (ndr= 8y, implying thata,=[w(7)u(7)d7. Therefore the crux of the issue
lies in the derivation of the dual basig. In the following, we will show that the
functionsu, can be built from the function¥;.

B. Mathematical derivation

In mathematically formulating the problem, we wish to find an approximate solution
of the problem:(Kf)(x)=g(x), whereg(x) is a given function. The approximate solution
is defined as the approximation of the true solutidny expanding it into a finite series
of functionsW¥:

p-1
f=2 aW,,
k=0

whereWV, is a set of orthonormal independent functions, with a finite suppbyttakes
nonzero values on a finite interyalnd indexed b, p is the number of functions needed
to approximatef, anda,=(f,V,). The bracketgf,V,) are a shorthand notation standing
for the scalar product of the function§ and W, defined as follows:(f,¥,)
=[pf (X)W (x)dx, the integration being made on an interizale.g.,R or the interval over
which V¥, is defined.
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We denote the image oF, by v, (x)=KW¥(x). We also introduce the adjoint of the
operatorK, denoted byK". The adjoint operator is defined in such a way tt&ia,b)
=(a,K"b) for any functiona or b. After basic integral computatiorigitegration by parts
it can be shown that the adjoint operator is

X

. 1
(K9 =2_] glydy. (4)
XB

If we can find a dual functiom, such that¥,=K"u,, then we obtain the biorthogo-
nality relationship
<ui!vj> = (SI] .

Indeed we havéu;,v;)=(KW¥;,v;)=(¥;,K'v))=(¥;,¥;)=5;. We are trying to solve the
approximate inverse problem

p-1
Kf=2 awc=0.
k=0

Multiplying by function u, and integrating oveR, we obtain the reproducing formula

5 p-1 3 p-1
f= 2 (KFLu)W, = > (g,u)W,. (5)
k=0 k=0

Consequently the key step in the treatment is to find the dual function @RkjSy<p-1.
It can be shown that the dual basis can be obtained by posing

o1
uk(x)=—i:EOEU,Q<%), (6)

whereU,(x) =x¥(x). Indeed, fori=0, using an integration by parts, we obtain

00,0000 =~ K U0+ [ (0B ) g

Since¥, has a finite suppoifimplying KW¥;(x)=0 whenx— =], we obtain
400 1 +0o0
(Key(x), = Ug(x)) = 8 = J (B Y (X)dX= & — Ef V(X)W (x/ B)dX.

Repeating the procedure for 0, we can show thay;(x) , uy(x)) = 5. When taking the
inner product with any functioy such thatg=Kf, the convergence is ensured here
because3<1,9(0)=0, andg’(0) is finite; indeed, we have

B9, Up(B7%)) = (g(xB), Up(x)) = B(g’ (0),Ur(x) + O(B),

wheni is sufficiently large. Asymptotically, we find th@(g(x),U.(87'x)) behaves like
B', implying that(K;(x), u(x)) converges to a well-defined limit.

When coping with irregular functions or when interested in obtaining sparse represen-
tations of functions, it is advantageous to use wavelet functions for the orthonormal basis
V. Another advantage in using wavelets is that the convergence rate and an estimate of
the error made in expanding the solution into a wavelet series can be determined in
advance(see the EPAPS documéniWhen wavelet functions are used, the dual basis
functionsy; are calledvaguelettedy Donoho(1995 because they present properties that
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are very close to properties exhibited by wavelets. In the following, we will use the
so-called Daubechies D8 wavelets fdr, but alternative choices can also be made
without significant changes in the final result.

C. Numerical implementation

The numerical implementation of the method is reasonably simple since it involves
computing the inner productss(7),u(7)). Several commercial producfMathematica,
Mathlab, eto. allow such computations. For numerical purposes, it is convenient to use
dimensionless variables. We can take dimensionless variables by defirifdg.. ¥
=l'wmay and 7=T7ya, Where 7., and o, denote, respectively, the maximum shear
stress and rotational velocity. The dimensionless operator has the same form as the
original

"1
—=d
or €

but it is defined for functions taking their values @ 1] instead ofR. A Mathematica
program doing the numerical calculations is included in the EPAPS document. This
program includes both WVD decomposition and Tikhonov’s method.

In practical situations, functiof)(T) must be evaluated from data, e.g., by using
interpolation techniques such as the kernel method or wavelet regréskion1999;
Kovac (1998; Wahba(1990]; the inner products can then be computed by numerical
integration of this interpolating curve.

Computation time and convergence can be accelerated; instead of solving the problem
Eq. (7), we can solve the problem

Q(T) = (KI)(T) = £, )

.
QUM =KE)(T) = [ A(HdE, (8
BT

where A(§=T'(§/&. In this case, the dual vector is=—-3_,87 W/ (87x); thus, in de-
termining the inner produg}(T),u,(T)), the trick is to computéQ(T), ¥/(T)), whereas
in the original problem{Q(T),x¥/(T)+¥;(T)) must be computed.

The inner product involves the dual vectaksdefined from an infinite serigsee Eq.
(6)]. In practice, the series is truncated whenis small enough. Typically, fog=0.5,
keeping the first ten terms of the series is sufficient to ensure an accuracy®of 10

When the material is viscoplastic, the shear rate is nonzero only for a shear stress in
excess of the yield stress. As a consequence, some authors replace the lower h@tnd
in Eq. (2) with 7, [Nguyen and Bogef1992; Yeow et al. (2000]. In the numerical
computations, this replacement may increase accuracy and avoid problems of vanishing
shear rates, but this also implies that one of the integration bounds is not known and must
be determined separately or iterativedyg., see Yeowet al. (2000]. A clear advantage of
the method presented here is that the wavelet functions are specifically designed to
capture possible discontinuities and consequently it is not necessary to modify the inte-
gration bounds. Note that, when using the Tikhonov regularization technique, it is pos-
sible to keep the integral boundaries unchanged by writing
1719 17 A9
w(7) = 2[ S ds= 2, s H(S- 7,)dS,

Tc

whereH denotes the heavyside function.
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FIG. 1. Flow curve for the(dimensionlessCasson model. The solid line represents the numerical approxima-
tion obtained by using the WVD approach, whereas the dashed line represents the exact soly8an Eqg.

D. Numerical example

For the numerical test, let us consider the following Casson constitutive equation in a
dimensionless form

VT= T+, 9

where T, is the dimensionless vyield stress. For numerical applications, let u3g.set
=0.1. Computations are made over the intef@gll]. The corresponding dimensionless
torque per unit height is

0 for T<T,,
QM) =TT~ \VTT.+4T .+ TIn(T/T) for T,<T < BT, (10)
T.- BT+ M TT(VB-1) -TIng for T=}gT..

We use the Daubechies D8 father wavelgtsio represent functions whose support lies
within [0, 1], p=78 wavelets are needed; we USEy);<k<78={P6 -14 P6.-13. " ** » D6 .63

We denotel the approximate dimensionless shear rate. The recovered shear rate is
reported in Fig. 1. Note the perfect reconstruction of the shear rate over the entire
interval. The mean-square error is approximately 1.219 66° vs 1.216 75¢10°°

whenT" is computed from the exact function.

Similar tests were carried out by replacing the exact dimensionless torque with an
interpolating polynomialpiecewise polynomial of order) 3itting ny=100 data computed
from Q(ié), fori=0,...,ng—1 ands=(ny—1)"%. Very good agreement was found, with no
difference to the naked eye with the exact flow cufmeean-square error 1.296 932
X 1079).

In parallel, we used the Tikhonov method as describeflyeow et al. (2000]; we
used the same set of; simulated datd)(iA), n,=200 interpolation points to discretize
the integral term in Eq(7) and a smoothing parameter 107°. The result is reported in
Fig. 2@). Good agreement was also found for this method between the exact flow curve
and the recovered curve, but the mean-square error is substantially larger than for the
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FIG. 2. (a) Flow curve for the(dimensionlessCasson model when Tikhonov’s method is used; the solid line

represents the numerical approximation obtained by using the Tikhonov approach, whereas the dashed line
represents the exact solutipiqg. (9)]. (b) Difference between the computed and the exact shear (kztes as

a function of the dimensionless shear stress: WVD apprésalid line) vs Tikhonov methoddashed ling
WVD approach(2.52x 1078 vs 1.29x 10°%). The main difference between the two meth-

ods lies essentially in the bias between the exact flow curve and the reconstructed curve.
As shown in Fig. 2b), the differencell” between the recovered value and the exact shear

rate is very close to zero for the WVD method apart from the yielding poift=al.1,

whereas it is systematically below zero for the Tikhonov method and increases with
increasing stress.

449
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IV. APPLICATION TO REAL CASES

A. Raw data

We have applied both the WVD inverse method and Tikhonov's regularization tech-
nique to two series of data available in the literature.

e Baudezet al. (20049 investigated the rheological properties of a polymeric suspension
(commercial hair gel made of Carbopalsing a stress-controlled Paar Physica MC1
+ rheometer equipped with a Couette geoméy=1.25 cm and3=0.26. In addition
they carried out velocity-profile measurements in a similar geom@&yy¥4 cm and
B=0.44) using magnetic resonance imagifigRI) techniques. Further rheometrical
tests were also done with a Bohlin CVOR200 rheomefy=0.0125 cm andg
=0.06. Carbopol suspensions usually exhibit a viscoplastic behd®aberts and
Barnes(2001)]. MRI techniques made it possible to obtain an accurate estimation of
the flow curve and then to compare the different methods.

« Ancey (200)) studied the rheological behavior of granular suspensions using a vane
mounted on a Haake Rotovisco MV5 rheometer=3 cm andB=0.09; the sheared
height wash=32 mm (different heights were also tesjed he tested suspension was
made up of glass beaddiameter 0.8 mmin a 98.5% water/glycerol solution at the
solid concentration of 60%very close to the maximal solid concentratioiBuch
suspensions exhibit a complicated behavior depending on the shear rate: a frictional
Coulombic behavior at low shear ratdike a granular sojl and viscous behavior at
high shear rates.

The data obtained by Baudet al. (2004 and Ancey(2001) are reported in a log-
linear plot in Fig. 3. They were slightly noisy and a specific procedure was used to
denoise and interpolate the raw data. Different nonparametric regression techniques can
be used for this purpose: kernel estimaétart (1999], spline smoothing' Wahba
(1990], Fourier series estimator, wavelet regression and shrinkage(1999, 2002,
Donoho and Johnston@995; Kovac (1998], Bayesian inferencBNerman and Keren
(2001)], etc. There is not a universal method because, depending on the noise level, the
number of data, and the properties of the function to be recovered, the performance of
each method in terms of denoising efficiency can vary significantly. Here, because of the
small size of the data samples, the optimized Gasser—Miiller kernel m@tiehutied in
the Mathematica packape/as used to denoise and interpolate the dfatadetails in the
implementation, se¢Hart (1999]}. The resulting interpolating curves are plotted in
Fig. 3.

B. Results

Figure 4 shows the flow curves deduced by the Tikhonov regularization method
(dashed lingand the wavelet-vaguelette decomposition mettsadid line) for the poly-
meric gel and the granular suspension. For the Tikhonov method, we used the method
described in[Yeow et al. (2000] with n,=400 discretization points and a smoothing
parameten=2x 10°® and 5x 107 for the polymeric gel and the granular suspension,
respectively. For the WVD method, Daubechies D8 wavelet and the functional formula-
tion were usedsee Sec. Il

For the polymeric gel, it was possible to independently obtain a reference flow curve
by using the velocity profile determined by Baudsizal. (2004 using MRI techniques.
Indeed, in a Couette geometry, the shear stress distribution across the gap is imposed:
7(r)=M/(2mr?); the shear rate can be computed by differentiating the velocity profile
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FIG. 3. (a) Raw data obtained by Baudez al. (2004 for a polymeric gelCarbopo). (b) Raw data obtained

by Ancey (2001 for a granular suspension. Dots correspond to data while the solid lines represent the curve
interpolating the data obtained using the Gasser—Mdller kernel m¢bzodiwidth parameter taken at Q&)

and 0.05(b)].

v(r):y(r)==rad(v/r)/dr. Reporting a parametric pldty(r),#(r)] as a function of the
radial distance makes it possible to have a clearer idea on the flow curve for the material
tested. The dots in Fig.(d represent the flow curve determined in this way.

For the polymeric gelsee Fig. 4a)], the three methods compare well over a shear-rate
range covering approximately two orders of magnit@8l& 102< y<20 s!), whereas
differences can be observed at low and high shear rates. Because of the smoothing
constraint imposed on the flow curve in the Tikhonov method, the shear stress drops
quickly at low shear rates, leading to an underestimation of the yield $gsSmated at
41 Pa using independent testSimilarly, at large shear rates, the slight convexity of the
flow curve(in a log-linear representatipteads to an undue increase in the shear stress.
Because of the absence of regularization constraint in the WVD method, the correspond-
ing flow curve comes closer to the experimental flow curve inferred from MRI measure-
ments. We can, however, notice the bump for shear rates in the range 510
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FIG. 4. (a) Flow curve for the polymeric gelb) Flow curve for the granular suspension. (&, the dots
represent the flow curve obtained by differentiating the MRI velocity profile. The dashed lines represent the
flow curves obtained using the Tikhonov methsthoothing parametex=2x 10" and\=5x 107° for flow
curves(a) and(b), respectively. The solid lines represent the flow curve determined using the WVD method.

X 1072 s71, which seems not natural. This is probably an artifact caused by the interpo-
lating curve[see Fig. 8a)] since a similar bump is also observable. Additional rotational-
velocity data are required to improve accuracy in the low-shear-rate limit.

For the granular suspension, substantial differences appear between the flow curves
deduced using the Tikhonov and WVD methods. At first glance, the WVD flow curve
shows an unrealistic wiggly behavior while the Tikhonov flow curve seems more realistic
and to smooth out the shear-stress oscillations seen in the WVD curve. The behavior
exhibited by the WVD solution can be understood by reminding the main traits of the
bulk behaviorf Ancey (2000 ].

¢ At low shear rates, the granular suspension exhibited a frictional Coulombic behavior,
i.e., a shear-rate independent shear stress, which was linearly linked to the normal
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stress; shear was localized within a narrow cylindrical band around the vane, whose
typical size was a few diameters.

* At large shear stress, the suspension behavior was closer to a Newtonian behavior
(M« and 7 independent of the normal strgsall the space between the vane and
outer cylinder was sheared.

This regime transition was interpreted as a consequence of contact lubrication between
particles[Ancey (2001)]. As seen in Fig. @), the transition between the two regimes
occurred at approximatelf2=0.4 rad/s. Since the typical thickness was of the order of
5-10 particle diameters, i.e., 4—8 mm, we deduce that the critical shear rate at the
transition was of the order af,=0.03x 0.4/(4 X 10°3)=0(2)s™*. When contacts between
particles were lubricated, the shear-band thickness rapidly grew to finally occupy all the
available space, leading to a progressive decrease in the shear rate. If the expansion of the
sheared region were instantaneous at the transition, the shear rate should have dropped to
a minimum value, whose order of magnitudeyjs=0.03x 0.4/0.1=0(0.1)s ™%,

Taking a closer look at the WVD solutigrsee Fig. 4b)], we observe that, for low
shear stresseg <50 Pa, the flow curve is approximately horizontal for shear rates in
the range 0.1-478. At y=4 s (close to the order of magnitude found fgy), a slight
increase in the shear stress leads to a substantial decrease in the shear rate, which drops
to 1 s'%; this value is much higher than the valuegf, but this is normal sincé,, has
been estimated by assuming a sudden expansion of the sheared zone. For higher shear
stress(7>80 Pg, the shear stress varies almost linearly with increasing shear rates.

Variants of the WVD decomposition and interpolation techniques were used, but we
came to similar conclusions. In brief, although, at first sight, it was a bit unrealistic, the
behavior exhibited by the WVD solution can be convincingly explained by analyzing the
bulk behavioKreflected in the scaling behavior bf({2,h) shown in[Ancey (2001 ]} and
interpreting it in terms of particle behavior. For the same reason as for the polymeric gel,
the Tikhonov solution smooths the flow curve bulges, thus it compares well with the
WVD solution only at very low and large shear ratgs<1 s or >6 s3).

V. DISCUSSION AND CONCLUDING REMARKS

In this paper we have shown that the wavelet-vaguelette decomposition makes it
possible to recover the shear ratdrom the rotational velocityo(7) by using a wavelet
representation

W)= % aWu(7),

where ¥, is a wavelet basis and,=(w(7),u with the vaguelette functioru(r)

=-3 B8V (n] (B ¥r). Wavelet bases offer accurate and sparse representations for
functions whatever their regularity. Therefore, for most cases encountered in rheometry, it
is possible to reconstruct the shear ratérom the rotational velocityw without using
additional assumptions on the smoothnes$,dds in Tikhonov's regularization. Another
advantage offered by the WVD approach is that, fundamentally, very high accuracy can
be imposed in advance when reconstructing the shear rate by an appropriate selection of
the wavelet basis and the number of elements used in the wavelet representation. Tradi-
tional methods such as Galerkin methods or the regularized least-square approach do not
lead to such a high degree of accuracy and adaptivity unless specific iterative procedures
are used to improve the initial results.
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When the rotational velocity is a noisy signal, it is possible to remove a large part of
the noise by shrinking the wavelet coefficients or smoothing the data.

* Donoho (1995 and Cai(2002 showed that if the shrinkage threshold is properly
chosen, then the WVD solution converges toward the “better” solution at the optimal
rate. This optimal rate is, however, quite low and thus in practice, a large number of
data(typically as large as% are needed to offset this slow convergence.

« In practice, when the data number is small, alternative regression techniques such as
the spline interpolation or the kernel estimator must be used. Here, the optimized
Gasser—Miiller kerne{see[Hart (1999]} method was successful in denoising and
interpolating experimental data.

In other methods such as the regularized least-square method, noise is smoothed out
when regularizing the solution. In a sense, this procedure is more robust and less data
hungry because additional assumptions on the smoothnesarefused, but it introduces
a bias between the exact solution and the regularized curve, which can lead to significant
estimation errors in some pathological cases. An exemple has been provided in Sec. IV
with a highly concentrated granular suspension.

We have developed two formulations of the wavelet-vaguelette decomposition: con-
tinuous and discrete formulations.

* In the continuous casey(7) must be a function, evaluated by interpolating data and
satisfyingw(0)=0 andw’(0)=c, wherec is a constant for the inner products to con-
verge. Numerical computation of the inner produgts(w(7),u,) can be time consum-
ing, especially wherB is close to unity, because the vaguelette functions comprise an
infinite series of terms. In principle, any degree of accuracy can be achieved by the
WVD decomposition by altering the numbprof wavelets and vaguelettes used in the
computationgsee the EPAPS documenbut in practice, there are some restrictions in
the maximum achievable accuracy because interpolating functions are used.

« In the discrete casey=w(7) is a data vector. To some extent, the discrete formulation
can be seen as the discretized version of the continuous WVD decomposition, since the
discrete vaguelette is a vector whose points can be interpolated by the corresponding
continuous vaguelettesee the Appendix.

In summary, the new method developed here is an interesting alternative to traditional
methods such as the Galerkin and Tikhonov methods because it offers greater accuracy.
This point is of great importance because a number of materials currently investigated,
notably in the field of suspensions, exhibit particular properties, including rapid change
behavior in the flow curvde.g., in glass-bead/glycerol suspensig¢Ascey (2007)],
clay-water dispersiong€Coussoi(1995], etc}, discontinuous shear rate distribution at the
yielding point[Raynaudet al. (2002], giant fluctuationgLootenset al. (2003], etc. For
such materials, the additional assumptions used in the traditional methacts as the
regularization procedure in the Tikhonov methatay lead to unrealistic results. Typical
exemples have been provided in Sec. IV.

The wavelet-vaguelette approach is also interesting bedauisallows us to control
the solution accuracy and convergence &l it can be combined with an optimal
denoising procedure when data are noisy. Its main drawback lies in the numerical imple-
mentation(numerical integration needed until faster algorithms are avajlabid the
computation time that can be much longer than for traditional methods. This approach
probably clears the way for other methods that will combine the accuracy and adaptivity
of wavelets and the versatility and easiness of Galerkin methods.
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APPENDIX : DISCRETE FORMULATION WAVELET-VAGUELETTE
DECOMPOSITION

A. Principle

Here we consider an alternative formulation of the wavelet-vaguelette decomposition,
where the discrete nature of experimental data is directly taken into account. We assume
that we haven data w;=w(7). The objective is to deduce the shear rate from the
rotational-velocity measurements.

To that end, we introduce the discrete opera€grthat mapsL,(R) to R", wherelL,
represents the space of functions that are square integrable, and its adjoint dp*grator

Knf(x) — yiyi = (K)(x) = i izz)dz, 1<isn,

B

n
K3y = Wiician— N2 = 2 2HI(6 - 2(2= B3],
i=1
whereH denotes the heavyside function. The shear rate is related to measurements by
@ =(Kyy)(7).
As previously, we consider the approximate solution to the inverse prakjgémy by
using a truncated wavelet series for the function to be determineﬁfgolak\lfk, where
T, is a set of pairwise orthogonal, independent functions. The image of a basis function
W is denoted by, =K.V, i.e., a vector ilR" (the same holds for the dual bagsié/e are
seeking a dual basis or vaguele@gsuch that[€,e]=0, where the square brackets
denote the scalar product RI". From the relation

(&8 = [KaWi, 8] = (¥, KB = S,

we deduce that; and K;E-k are parallel. In other words, a factdr exists such that
LWi=K'g. It follows that:

a; = (f, W) =(f, K@) = § K 8]

An estimate of the wavelet coefficient is obtained by replacing(,f by y:a=(f,¥;)
~ 'y 8l

Different methods can be used to determine the dual fasiet us callP thenXp
matrix, whosekth column is the vectog,. Similarly, Q denotes then X p matrix, whose
kth column is the vectog,. The first approach to obtain the biorthogonality relation
between the bases is to fil@l such thatPQ’ =1,, wherel, is thenx n identity matrix,
but the matrixP is poorly conditioned and its numerical inverse can include significant
roundoff errors. Another approach is to directly use the definitio®pindeed, from
4W=K &, we deduce thattje =(K.K,)&. The Gram matrixM , of the operatoK K is
usually well conditioned, it is symmetric and can be inverted. We can then dgfine
:Mglek; note that here, by construction, we haye 1.
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Returning to our rheometry problem, we find that an estimate of the shear rate is
obtained by computing from a set ofdataw=w;, w,, ..., o,:

Y1) =2 [W,B]W(7). (A1)
i=1

B. Numerical implementation

The numerical implementation requir@s the selection of a representation fpi(see
the EPAPS documenand the definition of the basi¥;, (i) the computation of the
imagese =K, ¥, and the resultingn X p matrix P, (iii ) the computation of thea X n Gram
matrix M ,, (iv) computation of the dual vectogs, and(v) computation of the shear rate
[Eqg. (A1l)]. Note that stepsi)—(iv) are independent of measurements and can be done
once(for a given radius ratig@). The matrixP must be calculated numerically. The Gram
matrix M, can be computed analytically since its entries are given by
M; = j SHlx- Br)(n - 0IHLx - B) s —x)]:ln(ﬁ),
R X Xq
where [X1,X]=[B7,7]N[B7,7]. The Gram matrix is usually well-conditioned even
though many entries are zero. It can be inverted easily by the usual methods.

C. Numerical example

We consider the same example as in Sec. Ill D. We congiddi00 data computed
from Eq.(10), w: w;=Q(T,), whereT,=ié for 0<i<n-1 ands=(n—1)"1. The shear rate
is sought in terms of a multiresolution wavelet serisee the EPAPS documegnis
previously in Sec. lll D, we use the Daubechies D8 wavelets and weAake5. Figure
5 shows the recovered dimensionless shear rate when D8 wavelets are uspd ¥th
(@), p=32 (b), andp=128(c).

As seen in Fig. (), there is a satisfactory agreement between the recovered and exact
shear rates for a fairly small number of wavelgis 16), but this agreement is poor at the
boundaries; this problem results from the use of periodized wavédets the EPAPS
documenk Interestingly, increasing the wavelet numipareduces the problems encoun-
tered at the boundaries, but also causes new problem&=f@.5, a small bump deforms
the retrieved flow curve fop=32[see Fig. B)]. Still, increasing the number of wavelets
aggravates this problem, as shown on pdoedf Fig. 5: the bump is replaced by a series
of wide oscillations. Typically, increasing here leads to the mean-square error rising
(7.23x10°° from 1.25x 10°* to 1.25x 10°* whenp is increased from 32 to 128There
is also a typical distance separating the oscillations, which is controlled by the radius
ratio B. For instance, on panét), the first oscillations are localized aroufid= 0.5, the
second close t@ X 0.5=0.25, the third tg3°x 0.5=0.125, and so on in a geometrical
progression.

The reason for these shortcomings stems from the fact that, from the analytical view-
point, the dual functiony;, involves an infinite series of increasing terms, but its discrete
counterparg is unable to mimic the behavior of higher terms in this series. To illustrate
this more clearly, let us consider an example by examining what happens for high-order
vaguelettes. In Fig. 6, we have plotted the dual functigp(dashed lingassociated with
the wavelet¥,s=, g and its discrete counterpags; only the first four terms in the
infinite seriesu, g[see Eq(6)] have been reported for the plot to be readable xAnrthe
range 0.2-1, there is reasonably good agreement between the discretéeyahresthe
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FIG. 5. (a) Flow curve for the(dimensionlessCasson model whep=2*=16 wavelets are used to represgnt

the solid line represents the numerical approximation obtained by using the discrete WVD approach, whereas
the dashed line represents the exact solut®m (9)]. (b) Flow curve whenp=25=32 wavelets are usedc)

Flow curve wherp=27=128 wavelets are used.
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FIG. 6. Comparison between the dual functiopg (dashed line, truncated serieend its discrete counterpart
B

dual functionu, g points fall onto the first two oscillations correspondingUg(x) and
B U (B ) in the infinite seriesee Eq.(6)]. The third oscillation corresponds to
B2U’(B?x); its support is much narrower and its amplitude larger than the two previous
oscillations; the points do not capture all the oscillations. The only way for the végtor
to mimic high-order terms afi,s would be to substantially increase the point density, i.e.,
the measurement number

In short, the discrete WVD decomposition can provide results in fairly good agree-
ment with data(except for the boundaries where spurious oscillations are induced be-
cause of the use of periodized waveletsicreasing the accuracy of the reconstructed
shear-rate requires substantially raising the measurement number for the discrete
vaguelette to mimic the continuous-vaguelette behavior. Its advantage is less obvious
compared to Tikhonov regularization and the continuous formulation of the WVD de-
composition even though, with modern rheometers, taking a large number of measure-
ments is rather easy.
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