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Observations in rivers or flumes have shown that for low water discharge, sediment transport is a very intermit-
tent process. To understand the physical origins of the solid-discharge fluctuations, we investigated the motion
of coarse spherical glass beads entrained by a steady shallow turbulent water flow down a steep two-dimensional
channel with a mobile bed and steady bead supply at the inlet. Flows were filmed from the side by a high-speed
camera. We also revisited Einstein’s theory on sediment and derived the statistical properties of the key flow
variables. Analyzing the autocorrelation functions and the probability distributions of our measurements re-
vealed the existence of long-range correlations. These frequent wide fluctuations stemmed particle entrainment
and motion being collective phenomena rather than individual processes, contrary to what is assumed in most
theoretical models.

1 INTRODUCTION
The objective of this paper is to characterize and

understand the physical origins of wide fluctuations
in the solid discharge for sediment transport in gravel-
bed rivers and mountain torrents. Sediment is assu-
med to be made up of coarse particles driven by gra-
vity and drag exerted by a water turbulent flow.

Despite substantial progress made over the last two
decades in the physical understanding of the motion
of coarse particles in a turbulent stream, the ability to
compute sediment flux in rivers remains poor. For ins-
tance, the sediment flow rates measured in gravel-bed
rivers differ within one to two orders of magnitude
from the bed-load transport equations (Wilcock 2001;
Martin 2003; Barry et al. 2004), even though these
equations have been established from flume experi-
ments using regression techniques and are believed to
provide a proper evaluation of sediment transport in a
well-controlled laboratory environment.

Impediments to a full analytical approach to two-
phase flows are many: complex interplay between the
particles and the carrying fluid, particle exchanges bet-
ween the bed and the flow, turbulence effects (bed
friction, advection of turbulent structures), etc. That
is why most models are based on substantial approxi-
mations of the interplay between the solid and fluid
phases.

Einstein (1950) realized how important it is to ac-
count for the episodic nature of particle transport in
computing the solid discharge. In Einstein’s view, se-
diment transport does not result from an equilibrium
in the momentum transfers between solid and liquid
phases (Bagnold’s assumption), but rather from the
difference between the entrainment and deposition rates.
Einstein’s stochastic approach raises a number of is-
sues that have received few responses to date. For ins-
tance, since particles move sporadically and in dif-
ferent groups, the solid flow rate is made up of a se-
ries of pulses and is highly fluctuating, which makes
it difficult to define and measure it properly, even un-
der steady flow conditions (Bunte & Abt 2005). Both
field and laboratory experiments have revealed that
instances in which the instantaneous solid discharge
is four times higher than its mean value are frequent
(Kuhnle & Southard 1988; Lisle 1989; Boehm et al.
2004). Translated statistically, this observation means
that the probability density functions of the transport-
rate records have a thick tail and depart from the ex-
pected Gaussian behavior. This departure can be seen
as the hallmark of collective motions (Sornette 2000);
if so, this also implies that any mean-field approxi-
mation runs into difficulty since cooperation between
particles is not accounted for.

Our idea was to run experiments in an inclined,
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two-dimensional flume with a continuous particle sup-
ply and steady flow rate. This two-dimensional flume
is assumed to be the simplest representation of sedi-
ment transport on the laboratory scale and presents
overwhelming advantages: the boundary conditions
can be controlled and most of the flow variables can
be measured using image processing. Since a quanti-
tative comparison between theory and experiment is
biased by any parameter fitting, we tested Einstein’s
theory by analyzing the probability distributions and
correlations of the signals measured.

2 EINSTEIN’S THEORY REVISITED
Using ad hocarguments, Einstein (1950) derived

a bed-load equation, which has been considered as
the cornerstone of probabilistic theories of bed-load
transport. Taking inspiration from the work done by
Lisle et al. (1998) and Papanicolaou et al. (2002), we
assume that sediment transport at low flow rates can
be described using a birth-death process.

The solid discharge can be defined as the flux of
particles through a flow cross-sectionS. Equivalently,
we can define the flow ratėn = qs/vp as the number
n of particles in motion within a control volume of
lengthL times their respective velocityui

ṅ =
1

L

n∑
i=1

ui, (1)

(Boehm et al. 2004). In order to compute the discharge
equation, we need to establish (i) the numbern of par-
ticles in motion and (ii) their velocities depending on
the control parameters (water dischargeqw, θ, particle
radiusa, particle densityρp).

In order to compute the number of particles in mo-
tion, we can draw an analogy with chemical reactions.
If the particles resting on the bed surface are denoted
by B, the moving particles by M, we can represent the
exchanges between the two phases in the following
way:B À M. From these equations, we can establish
a kinetic equation, which tells us the rate at which ex-
changes occur between the species B and M. The time
variation in the number of moving particles is

dn

dt
=

nb→m

tb
− nm→b

tm
, (2)

wherenb→m is the number of particles dislodged from
the bed andnm→b is the number of moving particles
that are left to rest within the observation window.
These population exchanges are associated with the
characteristic timestb and tm, which are in turn re-
lated to the mean times during which a single par-
ticle stays at rest or moves, respectivelyσ andτ [see
Fig. 1(a)]. We can also use Eq. (2) to define the en-
trainment rate (first term on the right-hand side) and
the deposition rate (second on the right-hand side).

(a)

(b)
Figure1. (a) Succession of resting and moving phases for
a single particle. (b) The solid discharge is related to the
sum of the state variables.

Transitions between the moving/resting states oc-
cur randomly. Following Lisle et al. (1998) and Pa-
panicolaou et al. (2002), we assume that the particle
motion is influenced only by its present state and has a
fade memory of its previous states. In other words, the
state transitions are governed by a continuous-time
Markov process of order 1, with two discrete states
(moving/resting). If we further assume that there is
time and space invariance in the erosion/deposition
process, the Markov transitions occur with constant
probability per unit time. For any small time incre-
mentδt, we have

Prob(moving at timet + δt) = σ−1δt + o(δt),

Prob(resting at timet + δt) = τ−1δt + o(δt),

where the characteristic timesσ andτ are constant.
This two-state Markov process is known as a telegra-
pher’s process (Gardiner 1983). With these assump-
tions, it can be shown that the resting and moving
times are exponentially distributed with meansσ and
τ , respectively. IfTb,i and Tm,i represent the dura-
tions of theith periods of rest and motion since obser-
vation has started, then Prob(Tm) = τ−1 exp(Tm/τ)
and Prob(Tb) = σ−1 exp(Tb/σ); said differently, the
waiting time∆tb→r between two entrainments is ex-
ponentially distributed with a mean time equal toσ:
Prob(∆tb→r) = (σ + τ)−1 exp(∆tb→r/(σ + τ)). Using
the correspondence between the Poisson and expo-
nential distributions, we also deduce that the number
of events (deposition/entrainment) that occur per unit
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time is distributed according to a Poisson distribu-
tion: the probability that we observek entrainments
of the same particle within the time intervalδt (of
any duration) is given by Prob(k; δt) = νk exp−ν /k!,
with ν = δt/σ. The autocorrelation function isρ(s) =
exp(−(1/τ + 1/σ)s) (Gardiner 1983).

This description is a simplified probabilistic Lagran-
gian description of a single particle’s motion. We ge-
neralize it to obtain a Eulerian viewpoint, where we
describe the motion ofn particles within an observa-
tion window. Within our observation window of length
L = 2λa À a (λ being a free parameter that can take
any value), we assume that on average, the particle
flux is steady, which means that the particles that leave
the window are replaced by other particles coming
from upstream. Within this window, there are approxi-
matelyN = λ particles lying over the bed surface, ei-
ther at rest or in motion. The numbern of particles
in motion is then the sum ofN variables indepen-
dently distributed and governed by a telegraph pro-
cess [see Fig. 1(b)]. Since each particle is governed
by a telegraph process, the probability of observing
it in motion is ξ = τ/(τ + σ), i.e., it follows a Ber-
noulli distribution. Now, summingN particles follo-
wing a Bernoulli distribution leads to a binomial dis-
tribution with meanξN and varianceξ(1− ξ)N . We
then conclude that with our assumptions, the num-
ber n of moving particles is distributed according to
a binomial distribution, which means that ifξ stays
constant independently of the number of particlesN
whenL →∞, then the probability distribution ofn
tends toward a Gaussian distribution. If we further
assume that whenever a particle is set in motion, it
reaches a fairly constant velocityup (Ancey et al. 2003),
then using Eq. (1) leads to concluding that the proba-
bility distribution of the solid discharge is the bino-
mial distribution Bi, with meanξNup and variance
ξ(1− ξ)Nu2

p

Prob(ṅ) = Bi[ξNup, ξ(1− ξ)Nu2
p].

In the largeN limit, this distribution tends to be Gaus-
sian. Since the sum of Poisson-distributed variables
also has a Poisson distribution, we infer that the num-
ber of deposition/entrainment events per unit time has
a Poisson distribution: the probability that we observe
k entrainments within the time intervalδt is given by

Prob(k; δt) =
νk

k!
exp−ν , (3)

with ν = Nδt/σ. Instead of the Poisson distribution
for characterizing the number of events per unit time,
we can equivalently use the exponential distribution
for specifying the lag times between two events; the
mean waiting times between two entrainments within

the observation window is(σ + τ)/N . The autocorre-
lation function ofN parallel telegrapher’s processes
is

ρ(s) = exp(−s/τ∗), (4)

with τ∗ = στ/(τ + σ)/N . It is worth noting that, with
our assumptions, the solid discharge and the num-
ber of moving particles have the same autocorrelation
function.

According to Einstein (1950), the probability of en-
trainment is the fraction of timeξ = τ/(τ + σ) that
a particle is in a moving state. It also represents, on
average, the relative number of particles (i.e.,p) that
have moved within the observation window for a gi-
ven time interval (Papanicolaou et al. 2002). Moreo-
ver, in Einstein-like theories, particle entrainment re-
sults from a loss of stability: when the instantaneous
lift and/or drag force exceeds the resisting forces, the
particle is dislodged from the bed and starts to roll.
By relating the fluid forces to the instantaneous fluid
velocityuf , we can deduce the fluid thresholduc cor-
responding to incipient motion (Papanicolaou et al.
2002; Marsh et al. 2004). The probabilityp is then
defined asp = ξ = Prob(uf > uc). Over the time in-
terval tb, the number of particles that are entrained is
thennb→m = Np, while the number of particles that
come to a halt isnm→b = n(1− p) over the periodtm.
In steady flow conditions, Eqs. (2) and (1) lead to

qs =
p

1− p

tm
tb

N

L
up =

p

1− p

tm
tb

up

2a
, (5)

which is formally similar to the solid-discharge equa-
tion derived by Einstein (1950), except that the solid
discharge is now explicitly dependent on the particle
velocity.

3 EXPERIMENTAL FACILITIES
3.1 Overview

In order to test the influence of fluid velocity (or,
equivalently, Shields number) on bed-load transport,
we ran six experiments with different flow rates in
a two-dimensional channel (see Sect. 3.2). The fea-
tures of each run are summarized in Table 1. The hy-
draulic conditions are specified using classic dimen-
sionless numbers. The flow Reynolds number is defi-
ned asRe = 4Rhūf/ν, whereRh = Wh/(2h + W )
denotes hydraulic radius,̄uf = qw/(Wh) mean fluid
velocity, ν kinematic viscosity of water, andh the
time-averaged water depth. The Froude numberFr =
ūf/

√
gh varied significantly over the duration of the

experiment and along the main stream direction. The
meanFr values are reported in Table 1. The Shields
number is defined asSh = ρf ū

2
f/((ρp − ρf )gh) and

reflects the ratio of the water driving force to the fric-
tion resistance force on the bed (Boehm et al. 2004).
The solid concentration is defined as the ratio of the
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solid and water dischargesCs = qs/qw. Values repor-
ted in Table 1 are low, which indicates that particle
flow was dilute. Theh/d ratio is low, typically in the
range 1.7–3.2.

3.2 Channel
Experiments were carried out in a tilted, narrow,

glass-sided channel, 2 m in length and 20 cm in height.
Figure 2 shows a sketch of the experimental facility.
The channel widthW was adjusted to 6.5 mm, which
was slightly larger than the particle diameter (6 mm).
In this way, particle motion was approximately two-
dimensional and stayed in the focal plane of the ca-
mera. The channel slopetan θ was 10%.

3.3 Channel base and mobile bed
The channel base consisted of half-cylinders of equal

size (a = 3 mm), but they were randomly arranged.
Disorder was essential, as it prevented slipping of en-
tire layers of particles on the upper bed surface.

3.4 Solid and water supplies
Colored spherical glass beads with a nominal dia-

meter2a of 6 mm and a densityρp of 2500 kg/m3

were used. They were injected from a reservoir into
the channel using a wheel driven by a direct current
motor and equipped with 20 hollows on the circum-
ference, as depicted in Fig. 2. For the experiments
presented here, the injection rateṅ0 ranged from 5 to
20 beads per second, with an uncertainty of less than
5%. This corresponded to a solid discharge per unit
width qs/W of 9− 38× 10−5 m2/s. The water sup-
ply at the channel entrance was controlled by an elec-
tromagnetic flow meter. The discharge per unit width
qw/W ranged from4 to 10× 10−3 m2/s. The hydrau-
lic conditions (velocity profile, bed friction, etc.) have
been specified in earlier papers (Ancey et al. 2002;
Boehm et al. 2004).

3.5 Experimental procedures
Once bed equilibrium was reached, the particles

and the water stream were filmed using a Pulnix par-
tial scan video camera (progressive scan TM-6705AN).
The camera was placed perpendicular to the glass panes
at 115 cm away from the channel, approximately 80 cm
upstream from the channel outlet. It was inclined at
the same angle as the channel. Lights were positioned
in the backside of the channel. An area ofL = 22.5 cm
in length and 8 cm in height was filmed and later re-
duced to accelerate image processing.

The camera resolution was640× 192 pixels for a
frame rate off = 129.2 fps (exposure time: 0.2 ms,
256 gray levels). Each sequence was limited to 8000
images due to limited computer memory; this corres-
ponded to an observation duration of approximately 1
minute.

Each experiment was repeated at least twice in or-
der to spot possible experimental problems and to get
an idea of the data scattering. Images were analyzed
using the WIMA software, provided by theTraite-
ment du Signal et Instrumentationlaboratory in Saint-
Etienne (France). For more details, the reader can re-
fer to (Boehm 2005).

4 EXPERIMENTAL RESULTS
As we shall see below (Sect. 4.1), the generalized

Einstein theory predicts a number of features such
as the nearly Gaussian distribution of the solid di-
scharge, the Poissonian character of the occurrence of
entrainment/deposition over time, and the exponential
decrease in the autocorrelation function of the num-
ber of particles moving within the observation win-
dow. There are also a number of features that conflict
with the fundamental assumptions underpinning this
theory. In Sect. 4.2, we will see that the probability
distributions of the key variables have much thicker
tails than expected. This will be interpreted as the
hallmark of cooperation processes between particles
when they are entrained or when they move.

4.1 Solid-discharge time series
Figure 3 shows the time variations in the solid di-

schargeṅ, the number of particlesnr in a rolling re-
gime, the number of particles that passed from a res-
ting state to a rolling state (r → b) and conversely
(b → r). This diagram represents the results obtained
for a mean bed slope of 0.1 and a solid discharge at
the flume inletṅ0 = 8 beads/s (experiment 10-8 in
Table 1); these plots are typical of the results that we
obtained for other solid dischargesṅ0.

Note that in these state transitions [see Fig. 3(d–
e)], more than one particle can be involved; because
of the limitation of the acquisition rate of our high-
speed camera (130 images per second), we could not
resolve two events that occurred over very short time
intervals. This limitation may pose problems when in-
terpreting the Markovian properties of our time series.

A striking point in Fig. 3 is the wide fluctuations
that all the time series exhibit. Typically, the solid
flow rate ranged from 0 to 22 beads/s, while the mean
flow rate imposed at the inlet waṡn0 = 8 beads/s.
For the rolling regime, the fluctuation range was 0–
40 beads within the observation window, whereas the
mean number was̄nr = 9.7 beads.

As shown in Fig. 4(a), the empirical probability dis-
tribution of solid discharge is closely approximated
by a Gaussian distribution, although, in places, there
are spikes departing from the Gaussian trend. These
spikes reflect the existence of a finite number of par-
ticles within the observation window (Boehm et al.
2004). This Gaussian behavior is expected since the
solid discharge is defined as the product of the num-
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Experiment E10-6 E10-7 E10-8 E10-9 E10-16 E10-21
tanθ (%) 10.0 10.0 10.0 10.0 10.0 10.0
ṅ0 (beads/s) 5.3 6.7 8.0 10.0 15.4 20.0
qw/W (10−3 m2/s) 4.15 4.42 5.38 5.54 8.19 10.31
h (mm) 10.2 10.6 12.2 12.3 16.6 19.1
ūf (m/s) 0.41 0.42 0.44 0.45 0.49 0.54
ṅ (beads/s) 5.72 6.85 7.74 9.41 15.56 20.57
Re 4020 4090 4550 4570 5280 5910
Fr 1.29 1.29 1.28 1.30 1.22 1.25
Sh 0.113 0.120 0.135 0.139 0.188 0.216
Cs (%) 2.40 2.69 2.50 2.96 3.30 3.47
ūr (m/s) 0.063 0.074 0.065 0.075 0.075 0.072
ūs (m/s) 0.28 0.29 0.29 0.29 0.32 0.32
nr 7.29 6.92 10.37 9.94 16.65 26.69
Var(nr) 59.13 32.72 55.82 42.61 69.37 119.06
ns 2.17 2.93 3.39 3.74 6.19 7.52
Var(ns) 2.40 2.87 3.14 3.30 4.88 5.44
te (s) 0.34 0.36 0.23 0.22 0.20 0.18

Table 1. Flow characteristics and time-averaged values of dimensionless numbers characterizing bed load and water
flow. The slope is kept constant:tanθ = 10%, while the solid discharge at the inletṅ0 is altered. The notation E10-6
means:tanθ = 10% andṅ0 ≈ 6 beads/s. The measured solid discharge within the observation window is denoted byṅ.
Re, Fr, andSh are the Reynolds, Froude, and Shields dimensionless numbers. The time-averaged particle velocity in the
rolling (saltating, respectively) regime is denoted byūr (ūs, respectively), whilenr (ns, respectively) represents the mean
number of rolling (saltating, respectively) particles; the variance (Var) ofnr andns is provided. We have also reported the
autocorrelation timete of the rolling-particle numbernr(t).

illumination

water supply

walls (glass panes)

glass beads

observation 

window (max.):

25 cm x 8 cm

(640 x 192 pixel)

camera:

130 Hz, t    =1 min

to the PC

slope

obstacle

bed load layer

mobile bed

metal channel

  base

obs

diffusor
bead supply

Figure2. Sketch of the experimental setup.
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Solid dischargėn as a function of time. (b) Variation in the number of rolling particlesnr. (c) Exchanges between the bed
and the rolling phases: each bar oriented upward indicates the number of beads that passed from the resting state to the
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ber of moving particles and of their velocities [see
Eq. (1)]. Indeed, if the particle velocities are suffi-
ciently agitated (resulting in a random velocity dis-
tribution) and the number of moving particles within
the observation window varies significantly with time,
the law of large numbers supports this expectation.

As expected, the autocorrelation functionsρ of the
measured signalṡn(t), nr(t), andns(t) are similar. As
shown by Fig. 4(b), the typical behavior is the same:
(i) we observe a fairly slow exponential decrease, i.e.
for short times, we haveρ(s) ≈ exp(−t/te) with te a
typical time scale; (ii) the typical time scaleste related
to each signal are very close. For experiment E10-8,
we foundte ≈ 230 ms. The autocorrelation times for
other experiments are reported in Table 1.

In an earlier paper (Boehm et al. 2004), the times-
cale te was interpreted as the typical travel time of
the moving particles through the observation window.
While this interpretation seems reasonable for the so-
lid discharge, there is at first glance no clear reason
why this should be so for the number of rolling/saltating
particles. One could call on the following explana-
tion for the similarity in the autocorrelation functions:
once a particle experiences a transition into another
regime, it moves at approximately the same velocity
as the mean phase velocity and hence one expects that
the autocorrelation timenr(t) andns(t) is somehow
related to a travel time. However, since their mean
phase velocity was quite different (see Table 1), their
autocorrelation times should also be different.

In Sect. 2, we have also shown that for particle en-
trainment, the waiting-time distribution should follow
an exponential distribution of rater = N/(σ + τ). A
particular problem encountered here in evaluating the
parameterr is that we could not resolve successive
events when they occurred within a very short time
interval (less than the acquisition rate of our camera,
i.e. for lag times shorter than2/130 = 0.015 s); this
means that we should censor the lag-time sample to
remove the lowest values if we want to properly eva-
luate the sample distribution. For the sake of simpli-
city, however, we did not proceed in this way. Figure
5(a) shows the empirical probability distribution func-
tion of the lag times∆t for the different classes of
events (entrainment or deposition, transition to a rol-
ling or a saltating regime). We have superimposed the
exponential distribution, the coefficient of which has
been adjusted using the method of moments on the
whole sample. As expected, the exponential distribu-
tion is a fairly good representation of the lag-time dis-
tribution whatever the type of exchange except at low
values of∆t, for which the empirical distribution de-
parts significantly from the exponential trend. Adjust-
ment provides the following characteristic times for
each transition type for experiment E10-8:∆tb→r =
33.9 ms, ∆tr→b = 31.7 ms, ∆tr→s = 57.4 ms, and
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Dt

0.05
0.1

0.5
1

5
10

P
r
o
b

HaL

0.42 0.44 0.46 0.48 0.5 0.52 0.54
u
_

f

20

40

60

80

100

D
t

(
m
s
)

HbL

Figure 5. (a) Probability distribution of the time lag
∆t between two events (change in state): the filled disks
represent the state transitionb → r (entrainment,τb→r),
while the empty disks represent the state transitionr → b
(deposition,τr→b); the solid line provides the exponential
probability distribution adjusted on the datab←→ r (using
the method of moments). The filled boxes represent the
state transitionr → s, while the empty boxes represent the
converse transitions → r; the dashed line is the exponen-
tial probability distribution adjusted on the datar ←→ s.
(b) Variation in the lag times∆tb→r (filled disks),∆tr→b

(empty disks),∆tr→s (filled boxes), and∆ts→r (empty
boxes).

∆ts→r = 61.3 ms. For all experiments, the mean lag
times are reported as a function of the mean fluid ve-
locity in Fig. 5(b).

Up to this point, the generalized Einstein theory
is qualitatively consistent with our laboratory experi-
ments. A discrepancy is, however, noticeable. In Sect. 2,
we found that the autocorrelation timete was τ∗ =
στ/(τ + σ)/N and the waiting time was∆tb→r =
r−1 = (σ + τ)/N . From these relations, we deduce
that the ratio

τ∗
∆tb→r

=
τ/σ

(τ/σ + 1)2
< 1,

in contradiction with our experimental results, since
for instance for E10-8, we haveτ∗/∆tb→r = 6.9. The
autocorrelation time is much longer than expected. As
we shall see in the next subsection, this result is not
fortuitous and illustrates the existence of long-range
correlations in the physical processes governing sedi-
ment transport.
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4.2 Probability distribution of the number of moving
particles

Analyzing the probability distribution of the num-
ber of moving particles is richer than examining that
of the solid discharge because the latter combines two
sources of fluctuations: the number of particles and
their velocities, which makes it difficult to properly
interpret them. Here, we will focus on the probability
distributions of the number of rolling particlesnr (see
Fig. 6).

Figure 6 shows how the probability distribution of
nr changes when the fluid velocity is increased. At
low fluid velocities, the probability distribution is close
to a straight line in a log-linear diagram, revealing
a power-like behavior. At higher fluid velocities, the
probability distribution takes the shape of an asymme-
tric bell, with its maximum moving from left to right.
At first sight, the prominent impression is that increa-
sing the solid discharge leads to making the probabi-
lity distribution ofnr more Gaussian.

In the generalized Einstein theory presented in Sect. 2,
we inferred that the number of moving particles should
be distributed according to a binomial law, with mean
ξN and varianceξ(1− ξ)N whereN is the density
number of particles lying on the bed andξ = τ/(σ +
τ) is the mean relative time during which a particle
is maintained in motion by the stream. A particularity
of the binomial law is that its variance must be lo-
wer than its mean. For all our experiments, we found
that the sample variance exceeded the sample mean.
For instance, for experiment E10-8 [see Fig. 6(c)], the
mean number of particles is̄nr = 10.4, whereas the
variance is Var(nr) = 55.8. For all probability distri-
butions, the distribution tail is much thicker than ex-
pected.

Since thick tails are often associated with collective
phenomena (Sornette 2000), it is worthwhile charac-
terizing these distributions more accurately. We found
that the negative binomial distribution provides a fairly
proper representation of the empirical distribution, as
shown in Fig. 6. Small departures are observed in the
distribution tail (insufficient number of data) and when
nr → 0. Note that it was not always very easy to dis-
tinguish between incipient motion and oscillations of
bed particles and consequently our image-processing
algorithm failed at times to count the exact number
of moving particles. The small deviations between the
theoretical and empirical probability distributions may
result from this uncertainty onnr. Except for the be-
havior close to the boundaries, the whole trend is well
represented by the negative binomial distribution. Ins-
tead of a discrete distribution, we can use a continuous
probability distribution to approximate the empirical
distribution ofnr. A natural candidate is the gamma
distribution, which can be fairly well adjusted on data,
as shown in Fig. 6.

This observation is of fundamental importance since
it conflicts with the assumptions underlying the birth-
and-death process used in the theoretical derivation.
Indeed, if the particles are independent and identi-
cal, then one obtains a binomial distribution whate-
ver the model taken for rest/move, provided that the
flow is steady and there is bed equilibrium. The only
way to obtain a non binomial behavior would be to
have (i) unsteady flow conditions or (ii) non identi-
cal or dependent particles. Assumption (ii) is the most
plausible. Taking a closer look at the resting and mo-
ving states showed that on many occasions, particles
moved in well-separated groups (Boehm et al. 2004).
Collective displacement and entrainment of particles
explained why the particles were to some extent de-
pendent and thus why the autocorrelation time was
much longer than expected. One might think that ag-
gregate transport was promoted by particle sphericity
and equal size. Our observations are, however, well
supported by field measurements, which documented
similar processes in gravel-bed rivers (Drake, Shreve,
Dietrich, & Leopold 1988). The wide range of fluc-
tuations exhibited by laboratory or field measurements
(Wilcock 2001; Martin 2003; Barry, Buffington, &
King 2004) also confirmed the existence of thick-tailed
probability distributions for sediment transport invol-
ving irregular particles.

5 CONCLUSION

Our experimental results provided evidence that,
although some statistical properties (such as the au-
tocorrelation function of the solid discharge) predic-
ted by Einstein’s theory were consistent with our data,
the autocorrelation functions of the number of moving
particles and their mass distribution functions viola-
ted the assumptions underpinning Einstein’s theory.
Typically, the autocorrelation time was much longer
than expected and the mass distribution function had a
much thicker tail than predicted using Einstein’s argu-
ments. For instance, from the theoretical standpoint,
the number of moving particles within any observa-
tion window is a random number distributed accor-
ding to a binomial distribution; in the large-number
limit, the theoretical distribution should tend very qui-
ckly toward a Gaussian limit. In contrast, our experi-
ments showed that the sample variance outweighed
the sample mean and a negative binomial distribution
fits the data better. This means that extreme events
(i.e., a large number of moving particles) are much
more frequent than expected. Furthermore, our expe-
riments showed that the convergence toward the Gaus-
sian limit is slow. At the lowest solid discharges achie-
vable with our system, the probability distribution of
the particle number is closer to a power-law distri-
bution. When increasing the solid discharge, the va-
riance/mean ratio decreases and the probability distri-
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Figure6. Probability distributions of the number of rolling particles. The dots represent the empirical probability mass
functions. The dotted lines represent the negative binomial distribution, while the dashed lines represent the gamma distri-
bution. (a) Experiment E10-6, (b) experiment E10-7, (c) experiment E10-8, (d) experiment E10-9, (e) experiment E10-16,
(f) experiment E10-21.
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bution becomes increasingly bell-shaped.
The present study has many important implications.

First, it provides a plausible explanation about the fai-
lure of all mean-field theories on bed-load transport,
which ignore any cooperation effects between par-
ticles. It thus motivates further research with a clear
focus on collective effects in entrainment and displa-
cement of coarse particles as a result of fluid action.
Second, this work sheds some light in the critical is-
sues concerning bed-load measurement in rivers (Bunte
& Abt 2005). Hydraulicians and geomorphologists use
various systems (Helley-Smith sampler, bed-load trap)
to measure the solid discharge by capturing sediment
over a given time interval. The crux of the issues lies
in the proper selection of the sampling time (ranging
from a few seconds to several minutes), and this dif-
ficulty of selecting a proper timescale is illustrated
by the large differences among various measurement
systems.
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