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[1] In this paper, we seek similarity solutions to the shallow water (Saint-Venant)
equations for describing the motion of a non-Boussinesq, gravity-driven current in an
inertial regime. The current is supplied in fluid by a source placed at the inlet of a
horizontal plane. Gratton and Vigo (1994) found similarity solutions to the Saint-Venant
equations when a Benjamin-like boundary condition was imposed at the front (i.e.,
nonzero flow depth); the Benjamin condition represents the resisting effect of the ambient
fluid for a Boussinesq current (i.e., a small-density mismatch between the current and
the surrounding fluid). In contrast, for non-Boussinesq currents the flow depth is
expected to be zero at the front in absence of friction. In this paper, we show that the
Saint-Venant equations also admit similarity solutions in the case of non-Boussinesq
regimes provided that there is no shear in the vertical profile of the streamwise velocity
field. In that case, the front takes the form of an acute wedge with a straight free boundary
and is separated from the body by a bore.
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1. Introduction

[2] There is a growing number of models inspired from
shallow water (Saint-Venant) equations, which are used to
describe time-dependent, free surface flows involving fluids
with various rheological features. Essentially, these models
are based on a set of hyperbolic partial differential equations
that are obtained by integrating the mass and momentum
balance equations across the flow depth. Typical examples
include density currents [Rottman and Simpson, 1983],
particle suspensions [Parker et al., 1986], viscoplastic
fluids [Huang and Garcı̀a, 1998], dry granular flows
[Savage and Hutter, 1989], saturated granular fluids
[Iverson and Denlinger, 2001], etc.
[3] Impediments to accurate numerical solutions for these

equations are many and include the problem of front
tracking and shock formation [LeVeque, 2002]. In this
context, seeking analytical solutions is of great interest to
test the robustness and accuracy of numerical methods. For
shallow water equations, Ritter [1892] worked out a solu-
tion for the so-called dam break problem, where an infinite
volume of fluid is suddenly released on a smooth horizontal
plane. Earlier extensive work dates back to Grundy and
Rottman [1985, 1986], who showed that the shallow water
equations admit stable similarity solutions and used the
phase plane formalism to construct solutions that are more
general than Ritter’s solution. Gratton and Vigo [1994]
elaborated on this method to take shock occurrence and
upstream boundary conditions into account. These seminal
papers were devoted to planar inviscid Boussinesq gravity

currents, i.e., currents for which the Reynolds number is
sufficiently high for the viscous dissipation to be negligible,
while the resistance action of the ambient fluid implies a
Benjamin-like condition at the front (i.e., finite flow depth
at the front). A number of flows in nature and in the
laboratory belong to this class of flows [Simpson, 1997].
Subsequent work has extended these results by addressing
the effects of shearing and frictional forces [Daly and
Porporato, 2004; Hogg and Pritchard, 2004].
[4] The case of non-Boussinesq gravity currents has

received far less attention. When a current is in a non-
Boussinesq, high-Reynolds-number regime, the density
mismatch between the current and the ambient fluid is so
pronounced that the resisting effect of the ambient fluid
becomes negligible and one expects that the Benjamin-like
condition at the front no longer holds. Figure 1a shows a
typical example of a non-Boussinesq current: this is a high-
speed, dry snow avalanche. Its bulk density was approxi-
mately 150 kg/m3 versus 1.3 kg/m3 for the surrounding air;
its velocity ranged from 20 to 25 m/s, and the flow depth
was approximately 1 m, which led to a Reynolds number of
the order of 3 � 105. Note that the front is wedge shaped
and followed by a thin tail, which means that the flow depth
is zero at the front. In contrast, dilute powder snow
avalanches are in a Boussinesq regime and their front takes
the form of a blunt nose, as shown in Figure 1b, which is
consistent with a Benjamin-like condition [see also Ancey,
2004].
[5] In their analysis, Gratton and Vigo [1994] stated that

the non-Boussinesq boundary condition (i.e., vanishing
flow depth at the front) can be retrieved from the Boussi-
nesq case by making the Froude number at the front tend to
infinity. However, from a purely mathematical point of
view, the boundary value problem remains ill posed since
the only regular similarity solution vanishing at the front is
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the trivial solution (i.e., flow depth zero everywhere). From
the physical standpoint, no clear justification or easy inter-
pretation supports this statement. More recently, Ruo and
Chen [2004] suggested that the boundary condition at the
front is a part of the problem to be solved, but they were
able to derive this condition solely for finite volume and
constant inflow currents. Montgomery and Moodie [2001]
modified the governing equations to transform them into an
initial value problem. In the meantime, Hogg and Pritchard
[2004] examined the Ritter solution to the dam break
problem when the shallow water equations were slightly
altered to take nonuniform velocity profiles (shearing
effects) into account. Surprisingly enough, they discovered
that it was not possible to locate the front position since the
flow depth decreased toward 0 but never vanished.
[6] The objective of this paper is to examine the existence

of similarity solutions for non-Boussinesq gravity currents
when there is shear in the vertical profile of the horizontal
velocity field and the current volume may grow as a power
function of time. In this paper, we will revisit the paper by

Gratton and Vigo [1994] and show that the proper solution
associated with a zero flow depth at the front is a singular
curve. We will also demonstrate that this curve exists only
when the velocity is uniform within the tip region, which
extends and supports the earlier conclusion of Hogg and
Pritchard [2004].

2. Governing Equations

2.1. Flow-Depth-Averaged Equations

[7] We consider a shallow layer of fluid flowing over a
rigid horizontal impermeable plane. The fluid is inviscid
and incompressible; its density is denoted by r. The ratio � =
H*/L* between the typical vertical and horizontal length
scales, H* and L* respectively, is assumed to be small. U* =
O(

ffiffiffiffiffiffiffiffiffi
gH*

p
) is the velocity scale.

[8] Integrating the local Euler equations over the flow
depth provides the shallow water equations [Stoker, 1957;
Whitham, 1974; Chanson, 2004]. The shallow water equa-
tions take the generic dimensionless form

@h

@t
þ @h�u

@x
¼ 0;

@h�u

@t
þ @hu2

@x
þ h

@h

@x
¼ 0;

where the bar refers to flow-depth-averaged values, i.e., �u =

h�1

Z h

0

u(x, y, t)dy, where u(x, y, t) denotes the streamwise

component of the local velocity field. The dimensionless
velocity, flow depth, distance, and time were defined as �u =
û/U*, h = ĥ/H*, x = x̂/L*, and t = t̂U*/L*, respectively, where
the hat refers to dimensional variables. Introducing the
Boussinesq coefficient g makes it possible to relate the
mean square velocity to the square of the mean velocity: u2 =
g�u2. The Boussinesq coefficient can be defined as

g ¼ 1þ 1

h

Z h

0

1� u x; y; tð Þ
�u x; tð Þ

� �2

dy;

which shows that g reflects the shear strength in the vertical
profile of the horizontal fluid velocity.When g = 1, there is no
shear in the vertical profile of the streamwise velocity,
whereas g > 1 means that the velocity profile is sheared.
Assuming that g is known, we end up with a closed set of
equations for h and �u

@h

@t
þ @h�u

@x
¼ 0; ð1Þ

@�u

@t
þ 2g� 1ð Þ�u @�u

@x
þ �u2

@g

@x
¼ � @h

@x
1þ �u2

h
g� 1ð Þ

� �
: ð2Þ

When g is set equal to unity in the momentum balance
equation (2), we retrieve the usual form of the shallow water
equations [Stoker, 1957]. When g is constant and in excess of
unity, equations (1)–(2) are identical to the equations used by
Hogg and Pritchard [2004] to analyze the effect of shear on
front structure. In that case, the structure of the governing
equations is slightly altered: the convective acceleration term

Figure 1. (a) Dry snow, high-speed, flowing avalanche in
the experimental site of Lautaret Pass (France, courtesy of
Cemagref). This avalanche is typical of a non-Boussinesq
regime. (b) Power snow avalanche (Queyras, France,
courtesy of Maurice Chave) in its runout phase. Air
entrainment into the snow cloud induced a significant
decrease in the bulk density, which led the avalanche to a
Boussinesq regime.
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is weighted by the shape factor 2g � 1, while a Chézy-like
term affects the pressure gradient. These modifications are
minor and do not disturb the hyperbolic nature of the
equations; they may, however, have significant impact on
some occasions, e.g., when computing the nose features in the
dam break problem [Hogg and Pritchard, 2004]. A pervasive
assumption is to ascribe theBoussinesq coefficient to unity by
advocating that in the high-Reynolds-number limit, the
velocity profile is blunt, which implies that g must not differ
significantly from unity.

2.2. Flow Geometry and Boundary Conditions

[9] A two-dimensional flow regime is assumed, namely
any cross-stream variation is neglected. The depth of the
layer is given by h(x, t) (see Figure 2). The flow is generated
by a source of fluid: at t = 0, the sluice gate at the inlet is
raised with a given aperture rate h0(t), specified below.
Ahead of the front, there is a dry bed.
[10] At the source x = 0, the boundary condition is given

by the relation

�uh ¼ nAtn�1; ð3Þ

which stems from imposing a given volume growth rate at
the inlet

V ¼
Z xf

0

h x; tð Þdx ¼ Atn;

with n a prescribed coefficient. According to Gratton and
Vigo [1994], we must constrain n to lie within the range 0 �
n < 4; this condition on n is needed for the shallowness
assumption to be consistent. We furthermore assume that the
Froude number at the source is imposed: Fr0 = �u/

ffiffiffi
h

p
= a,

where a is a constant. The flow depth varies with time:

h = h0(t) = btm, where m =
2

3
(n � 1) and b is another

constant satisfying ab3/2 = nA.
[11] The other boundary conditions are prescribed at the

front. The front position xf is the point where the flow depth
drops to zero: h(xf) = 0; moreover, the front velocity is
�u(xf) = _xf.

2.3. Jump Conditions

[12] The solutions to the system (1)–(2) may admit
discontinuities (called shock or hydraulic jump in the
hydraulic literature). The flows either side of these are
connected by jump conditions, which express conserva-
tion of mass and momentum across the moving discon-

tinuity. Denoting the shock speed by s, we can write
these jump conditions associated with a conservative form
of equations (1)–(2) as follows [Whitham, 1974]

h�u½ �½ � ¼ s h½ �½ �; ð4Þ

gh�u2 þ h2=2
� �� �

¼ s h�u½ �½ �; ð5Þ

where the [[ � ]] denotes the difference upstream and
downstream of the shock.

3. Phase Plane Formalism

[13] In order to solve the similarity problem, we will use
the phase plane (or portrait) formalism, as earlier authors
did for the same kind of problem [Grundy and Rottman,
1986; Gratton, 1991; Gratton and Vigo, 1994]. The types
and characteristics of the similarity solutions are described
in detail by Gratton and Vigo [1994]. When the downstream
boundary condition is of the Benjamin type, i.e., at the front,
the Froude number is constant and the flow depth is
nonzero, Gratton and Vigo claimed that the boundary
condition h(xf) = 0 is obtained asymptotically by making
the Froude number tend to infinity [Gratton and Vigo,
1994], but we will show that in the particular case inves-
tigated here (g > 1), their construction is not always
possible. Except for this point, the formalism is identical
to that used by Gratton and Vigo [1994] and we will not
replicate their results here.
[14] Gratton and Vigo [1994] have shown that the

governing equations (1)–(2) admit similarity solutions
for a range of conditions at the source. Following Grundy
and Rottman [1986] and Gratton and Vigo [1994], we
pose

�u ¼ dxtd�1V xð Þ;

h ¼ d2x2t2 d�1ð ÞZ xð Þ;

where we have introduced the similarity variable

x ¼ x

td
;

with d to be determined from the initial conditions (2),
hence d = (n + 2)/3. The boundary conditions at the front
impose

Z xf
� 	

¼ 0 and V xf
� 	

¼ 1; ð6Þ

where xf denotes the front position. The former condition
Z = 0 is obvious; the latter one stems from the following
relation: since the front point is a material point, its
velocity is given by �uf = dxf /dt, which in terms of
similarity variables, is equivalent to V(xf) = 1. At the
source, we have the asymptotic behavior

Z / b
d2x2

and V / a
ffiffiffi
b

p

dx
when x ! 0: ð7Þ

Figure 2. Configuration of the flow.
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Since the solution may admit discontinuities, we supple-
ment the following condition derived from equation (2),
which ensures that the mass balance is not violated

Z xf

0

x2Z xð Þdx ¼ d�2A: ð8Þ

When there is not discontinuity, this equation is
redundant with equation (7).

4. Similarity Solutions

[15] We shall see that x is an autonomous variable in the
governing equations for Z and V, which means that we can
get rid of x and directly seek a relation between Z and V by
solving a first-order ordinary differential equation in the
form

dZ

dV
¼ F V ; Zð Þ

G V ; Zð Þ : ð9Þ

The behavior of the solutions to this equation can be
qualitatively outlined by working in the V–Z plane and
discussing the various possibilities of finding an ‘‘integral’’
curve passing through a given region.

4.1. Matrix Representation and Critical Curves

[16] Substituting the similarity forms into the governing
equations (1)–(2), we obtain two ordinary first-order dif-
ferential equations for Z and V that can be cast in a matrix
form

M V ; Zð Þ dw
dx

¼ Z

dx
S V ; Zð Þ; ð10Þ

with w = [Z, V]T,

M ¼ V � 1 Z

g� 1ð ÞV 2 þ Z Z V 2g� 1ð Þ � 1ð Þ


 �
; and

S ¼ 2� 3V d
V 1� V 4g� 3ð Þdð Þ � 2dZ


 �
:

This matrix form makes the discussion on the solution
construction a bit easier. The determinant of the matrix M is

detM ¼ dZ Z � I Vð Þð Þ;

with I(V) = 1 + (V � 2)Vg. Along the V-axis (Z = 0) and
the curve CI of equation Z = I(V), the solutions V(x) and
Z(x) to equation (10) are not properly defined because det
M = 0: these functions are multivalued except when the
crossing occurs close to a critical point. A multivalued

behavior is not physically admissible and this issue is
fixed by constructing discontinuous solutions (see
Section 5). At a critical point, both S and M vanish
and in that case, the crossing can be possible; the special

solution Z =
1

4
(9 � 8g)V2 provides a typical example (see

section 6.1 and equation (15)).
[17] When detM is nonzero, the system of equations (10)

can be inverted to provide

x
dZ xð Þ
dx

¼ F V ; Zð Þ
d Z � I Vð Þð Þ ; ð11Þ

x
dV xð Þ
dx

¼ G V ; Zð Þ
d Z � I Vð Þð Þ ; ð12Þ

with F(V, Z) = �Z(2Zd + V(�2Vdg + 4g + 3d � 3) � 2) and
G(V,Z) =Z(2� (V+2)d) +V(V(2g+ ((V� 4)g+ 3)d� 3) + 1).
[18] Instead of solving this system of differential equa-

tions, we form the ratio of the two equations to arrive at a
single ordinary differential equation (9) for Z0(V). This
allows us to work in the V–Z plane.
[19] When det M is zero, the system may have solutions

if the determinant of the cofactor matrix

N ¼ V � 1 3V d� 2

g� 1ð ÞV 2 þ Z 2dZ þ V V 4g� 3ð Þd� 1ð Þ


 �
;

is also zero. In the space (V, Z), the locus of the points for
which det N = 0 is a continuous curve CJ of the equation

Z ¼ J Vð Þ ¼ V gdV 2 þ �4dgþ 2gþ 3d� 3ð ÞV þ 1ð Þ
V þ 2ð Þd� 2

:

Note that G(V, Z) = (2 � (V + 2)d)(Z � J(V)), which means
that CJ is also the locus of points where the integral curves
have vertical tangents. Except for the case g = 1 and n = 1 (d =
1), the curves CI and CJ intersect at two points: Ag with
coordinates (2/(4g � 3), (9 � 8g)/(4g � 3)2) and P* with
coordinates (1, 1 � g). P* lies inside the first quadrant only
when g � 1. These points play an important role since their
existence means that there may be continuous solutions with
discontinuous gradients at points A and P*. They will be
useful thereafter in constructing the solutions (see Section 5).
Note that the so-called dam break or Ritter problem is the
particular case, where g= 1 and n= 1 [Whitham, 1974]; in that
case, the curvesCI andCJ coincide, which implies that a piece
of this curve is a part of the solution sought.

4.2. Special Curves and Critical Points

[20] In addition to the curves CI and CJ, there is another
specific curve that plays a role in the phase portrait: the
curve CF is the curve along which F vanishes, i.e., at which
the integral path has a horizontal tangent; its equation is
given by

Z ¼ 2þ V 3� 3 dþ 2g �2þ V dð Þð Þ
2d

:

The properties of these curves are summarized in Table 1.
[21] In the first quadrant of the phase plane V–Z, there

are three critical points resulting from the crossing of the

Table 1. Properties of the Special Curves CA, CF, CI, and CJ

Label Equation Properties

CA see equation (16) exceptional solution to equation (9)
CF F = 0 integral path having horizontal

tangent when crossing CF

CI Z = I(V) critical curve separating sub- and
super-critical regimes

CJ Z = J(V) integral path having vertical tangent
when crossing CJ
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specific curves CF and CJ: there are also two other points
resulting from the crossing of Z = 0 and CJ that we do not
comment on here [see Gratton and Vigo, 1994, Table 1].
The first one is the origin point O. Point Ag is also a
singularity. The third one is referred to as point Bg and has
coordinates (2/(3d), (9 � 8g)/(9d2)). Table 2 summarizes the
topological properties of the critical points Ag, Bg, and O
depending on the sign of K = (d � 1)(4g � 3(1 + d)).
[22] Figure 3 shows a few trajectories, the specific curves

(CI, CJ, and CF), the critical points (O, Ag, Bg), the
intersection point P* between CI (solid line) and CJ (dashed
line), and the front P in the particular case n = 5/2 (the same
as that shown in Figure 1 of Gratton and Vigo’s paper).
Note that at Ag, the three curves CI, CJ, and CF meet, which
implies significant behavior changes close to point Ag. A
few trajectories (thin curves with arrows) representing
solutions to equation (9) are also reported and illustrate
the behavior of the solutions close to the critical points; not
all the paths are physically meaningful since some cross the
critical curve CI (solid line).

5. Flow Discontinuity

5.1. Rankine-Hugoniot Condition

[23] Gratton and Vigo [1994] computed the jump con-
ditions differently from what is expounded here: they
introduced the notion of conjugate curves stemming from
hydraulics. In short, with each trajectory that lies in the
subcritical part of the phase plane is associated a conjugate
curve that lies in the supercritical region and represents the
locus of points that satisfy the jump conditions with respect
to the subcritical curve; finding the intersection of a trajec-
tory and its conjugate leads to determining the end point of
the continuous trajectory, marking the discontinuous tran-
sition to another state.
[24] Later, Montgomery and Moodie [2001] and Hogg

and Woods [2001] used the jump conditions (4)–(5), with
the only difference being that they expressed the conditions
in the frame relative to the jump. Note that these two
equations (4)–(5) involve three unknown variables, thus
are not closed, contrary to the equations used by Gratton
and Vigo [1994]. This implies that another condition is
needed to compute the jump features.
[25] We shall see that this additional condition can be

provided by the volume balance equation (8). The crossing
of the critical curve CI is not possible except when it occurs
at point Ag. When the crossing is not permitted, a shock
occurs, which is ruled by the jump conditions (4)–(5). If we
know the flow variables Z1 and V1 upstream (respectively,

downstream) of the shock, we can solve the shock equations
(4)–(5) to determine the shock velocity s and a curve
referred to as the shock curve V2(Z2jZ1, V1), which is the
locus of all the points satisfying the jump conditions (4)–
(5). Solving this system of equations, we derive the shock
velocity and the variation in upstream velocity V2 with
upstream flow depth Z2

s ¼ g

c
V1 �

1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
c Z1 þ Z2ð Þ þ 2 g� 1ð ÞV 2

1

� 	 Z2
Z1

r
; ð13Þ

V2 Z2jZ1;V1ð Þ ¼ V1

c
� Z2 � Z1ð Þ

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

c Z1 þ Z2ð Þ þ 2 g� 1ð ÞV 2
1

Z1Z2

s
;

ð14Þ

with c = g + (1 � g)
Z2

Z1
. In the derivation of (13)–(14), we

have assumed that the Boussinesq coefficient is the same
either side of the jump. Similar albeit far more complicated
relations can be derived when the jump is associated with a
modification in the velocity profile; we will not report these
relations here since they do not entail any change when we
compute the shock from upstream to downstream (although
the converse is not true). Since there is a quadratic
dependence on velocity in equations (4)–(5), we actually
find two shock curves, but a single one is physically
admissible by requiring that energy dissipation through the
shock be positive. This shock curve is then used to pass
from one trajectory to another one that satisfies the
boundary conditions downstream (respectively, upstream).
The problem boils down to finding the point (V1, Z1) at
which the shock occurs. To that end, we use a trial and error
procedure: first we select a point (V1, Z1) on the integral
path emanating from the source S, then we plot the shock
curve V2(Z2jZ1, V1), and finally we find the intersection
point between the shock curve and the other integral path
coming from the front point P. The procedure is iterated
until the fluid volume found by numerical integration is
consistent with the inflow rate imposed at the entrance (8).
An example is provided below (see section 6.2).

Table 2. Position and Properties of the Critical Points of

Equation (9) Closest to the Front Point Pa

Singular Points Coordinates K Type

O (0, 0) node

Ag

2

4g� 3
;

9� 8g

4g� 3ð Þ2

 !
K > 0 node
K < 0 saddle

Bg

2

3d
;
9� 8g

3dð Þ2

 !
K > 0 saddle
K < 0 node

aThe behavior of points A and B depends on the sign of K =
(d � 1)(4g � 3(1 + d)).

Figure 3. Specific curves CI (solid line), CJ (dashed line),
and CF (dotted line). The thin curves with arrows represent
a few trajectories computed numerically. The critical points
O, Ag, Bg, and Cg are plotted together with the front (point
P). Computations are made for n = 5/2 and g = 1.05.
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5.2. Weak Discontinuities

[26] It is worth recalling that a particular case of discon-
tinuity includes the functions that are continuous, but whose
derivative is not continuous at isolated points. This case is
encounteredwhen the curvesCI andCJ coincide (i.e., forg=1
and n = 1): when an integral curve crosses the critical curve,
we have both detM = 0 and det N = 0, which implies that at
this point, we can pass from one trajectory to another one and
since detN = 0, the new trajectory is a piece ofCI [seeGratton
and Vigo, 1994, section 5.2].

6. Similarity Solutions for ; > 1

[27] We are interested in determining the solutions to
equation (9) with g > 1 and which evolve in the first
quadrant (V � 0, Z � 0) and are related to boundary
conditions (6)–(8). For a given set of upstream boundary
conditions, the solution is represented in the phase plane by
a curve referred to as C, which links the source point S and
the front point P. The boundary condition (7) implies that
the source point S lies at infinity on C. Point P has
coordinates (1, 0) in this phase plane. Since we are
interested in supercritical flows, the source point lies below
the critical curve CI and is associated with a Froude number

in excess of unity (i.e., a > 1). The front point P always lies
in the subcritical region, which means that a weak or strong
shock must occur.

6.1. Special Analytical Solution When A = 2 (9 �� 8 ;)
�1

2

[28] Before examining general solutions to equation (9),
we note that there is a special analytical solution

Z ¼ 1

4
9� 8gð ÞV 2: ð15Þ

This curve is a parabola that we call P; this solution

corresponds to a Froude number Fr = a = 2(9 � 8g)
�1

2

. As
shown in Figure 3, P crosses the critical curves CI and the
specific curve CJ at point Ag. Since this point is singular,
the crossing is not associated with a hydraulic jump. A bit
farther, the parabola once again crosses the curve CI at point
Cg with coordinates (2/3, 1 � 9g/8), which is a regular
point, implying that the solution should become discontin-
uous in the neighborhood of Cg. The parabola P does not
pass through point P, which means that the downstream
boundary conditions are not satisfied. Since the integral
curve crosses the critical curve CI, solutions with discontin-
uous gradients (weak shock) can also be constructed and we
may find a discontinuous solution that satisfies the front
condition.
[29] At point Ag (for which det M = det N = 0), the

integral curve takes one path out of an infinity of paths.
Since Ag is also a node, all the curves (except for the
singular curves) are tangent to a limiting curve CA, whose
equation is given in the form of a Taylor expansion

Z ¼ 9� 8g

4g� 3ð Þ2
þ V � 2

4g� 3

� �
�16g2 � 4dgþ 24gþ 9d� 9

2 4g� 3ð Þ 4dg� 4g� 2dþ 3ð Þ
þ O V 2

� 	
: ð16Þ

This equation is obtained by applying L’Hôpital’s rule to
equation (9). This curve is an exceptional solution to
equation (9). Note that in numerical applications, we used
a power series expansion to order O(V6) that ensures
accuracy to within 10�4 in the numerical solution. A
graphical representation of CA is given in Figure 4 (dotted
line).
[30] Since P is a regular point, a single integral curve

passes through it: it is the trivial solution Z = 0 (the V axis).
The situation is sketched in Figure 4a, which is a close-up of
Figure 3: in this example (g = 1.05), no integral curve
except for the trivial solution Z = 0 passes through point P.
We conclude that there is no way of joining Ag and P when
g 6¼ 1 by following pieces of integral curves representing
regular solutions to equation (9). The exceptional curve CA

can, however, pass through P when g = 1; for g6¼ 1, this
limiting curve does not pass through P. In that case, we can
construct a solution with a weak shock at A1 and composed
of two branches: one goes from S to A1, while the other
connects A1 to P, as shown in Figure 4b.

6.2. Numerical Solution When A 6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼ 2(9 �� 8;)
�1

2

[31] The solution can be found by solving equation (9)
numerically. This can be done by selecting a pair of points
(VS, ZS) standing for the source point and such that ZS =

a�2VS
2; usually, takingVS of the order of 10

4 ensures accuracy

Figure 4. Specific curves CI (solid line), CJ (dashed line),
together withCA (dotted line). (a) Computations made for n =
5/2 and g = 1.05. (b) Computation made for n = 5/2 and g = 1.
The thin curves with arrows represent a few trajectories
computed numerically; the arrows indicate increasing x. The
critical point P* is plotted together with the front P (they
coincide in Figure 4b).
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to within 10�3. The ordinary differential equation (9) is then
solved using standard techniques. When coming closer to the
critical curve CI, the numerical solution starts to diverge: a
discontinuous solution (strong shock)must be envisaged. The
curve C is made up of a continuous path on either side of CI,
while the endpoints of these pieces are linked together by the
shock conditions (13)–(14).

[32] We refer to point E (VE, ZE) as the point at which the
shock occurs. First, note that it is not possible to directly
relate P and E using the shock conditions (13)–(14) because
a hydraulic jump cannot form between a dry bed and the
current. Second, since no regular solution except the trivial
solution Z = 0 passes through P, there is no other way of
joining the subcritical and supercritical branches of C since
the subcritical branch does not exist.
[33] Since there is no regular solution linking points P

and S, we must find another way of constructing the
solution. A reasonable assumption is to consider that in
the vicinity of the front, the Boussinesq coefficient drops to
unity, which ensures that we can find a nontrivial integral
path passing through P: the limiting curve CA, as shown in
Figure 4b, is the only one passing through P except for the
trivial solution Z = 0. We construct the solution as follows.
[34] At point E, the flow undergoes a shock: in the phase

plane, this implies that there must be a shock curve mapping
point E onto another point of the limiting curve CA that we
refer to as point E0. This situation is depicted in Figure 5a.
On Figure 5a, we have plotted the two shock curves (long-
dashed curve) emanating from E using equations (13)–(14)
together with points Ag and E0; the only physically admis-
sible shock curve is that corresponding to a flow depth
increase and a velocity decrease to ensure energy dissipa-
tion. Between E0 and P, the integral path follows the limiting
curve CA. We can now compute the solution.
[35] To determine V(x) and H(x), we first integrate

equation (9) to obtain the relation Z(V); then using
equation (12), we obtain an equation in the form

xE ¼ xS exp �
Z S

E

I V ; Z Vð Þð Þ
G V ; Z Vð Þð Þ dV

� �
; ð17Þ

which allows us to compute the coordinates of point E.
Taking into account the asymptotic behavior when x ! 0
given by equation (7), we can get rid of the terms
representing the behavior close to the source in order to
obtain a closed form for the coordinates of E. Note that

when a = 2(9 � 8g)
�1

2

, this computation can be done
analytically

xE ¼ 2VEd� 2

3d

� �d�1a
ffiffiffi
b

p

d
V d
E:

The path E0 ! P must also be integrated numerically. To
locate the position of E along the integral path, we used the
trial and error procedure, as specified in Section 5. On the
integral path coming from the source point, we first
guess the position of point E in the phase plane V–Z. We
deduce the position of E0 by seeking the intersection point
between the proper shock curve and the limiting curve CA,
then we compute the relations V(x) by solving equation (12)
numerically on either piece of the solution. The volume of

the current is then computed by integrating

Z xf

0

x2Z(x)dx

and comparing it with the expected value Ad�2 (see
equation (8)). The position of E is then varied until the
computed and expected total volumes coincide.
[36] For instance, we took the same values as those used

in the numerical applications done by Gratton and Vigo

Figure 5. (a) Phase plane in the vicinity of Ag: the specific
curves CI (solid line), CJ (dashed line), P (dotted line) are
reported. The critical point Ag is plotted together with the
front P. The long-dashed lines represent the shock curves
emanating from point E. (b) Velocity variation with x: the
solution to the Saint-Venant equations for g = 1.05 (solid
line) is compared with the solution related to the case g = 1
(dashed line). (c) Flow depth variation with x (same legend
as in Figure 5b). Computations are made for n = 5/2, a =
2.76, A = 1, and g = 1.05 (b = (nA/a)2/3 = 0.936).
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[1994, Figure 5]: n = 5/2, a = 2.76, A = 1 (i.e., b = 0.936).
Figure 6 shows us how the current volume varies with VE

and makes it possible to accurately locate the proper value
of E. On integrating equation (17), we found xE = 0.850,
which led to xP = 1.541. Note that in this particular
numerical application, the method of constructing the solu-
tion proposed by Gratton and Vigo [1994] failed: indeed,
the conjugate curve did not cross the integral path.

7. Similarity Solution for ; = 1

[37] We are now interested in determining the solution to
equation (9) in the usual case for the Saint-Venant equa-
tions, where the Boussinesq coefficient is set equal to unity.
The resulting integral path in the phase plane continues to
evolve in the first quadrant (V � 0, Z � 0) and must satisfy
the boundary conditions (6)–(8).
[38] The method is the same as that detailed in section

6.2. In order to evaluate the effect of g, we report the
solutions to equation (9) for g = 1 (dashed line) and g =
1.05 (solid line) on the same plot (see Figures 5b and 5c).
There are minute differences in the numerical results. We
found xE = 0.802 and xP = 1.5120. As shown by Figures 5b
and 5c, the relative deviation in the curves �u(x) and h(x) are
slight.
[39] We also used the method proposed by Gratton and

Vigo [1994]. We imposed a very small flow depth at the
front Z = k (i.e., a Froude number at the front Frf = k�1/2).
With k = 10�4, we found xE = 0.802 and xP = 1.522. We
checked the reliability of this solution by computing the
surge volume and found an error of �0.27%. This error may
be considered to be small, but it is far beyond numerical
uncertainty in our computations. We failed to find any
reason for this error, which was almost systematic in most
numerical simulations.

8. Discussion

[40] A striking feature of our results is that the head of the
surge is wedge shaped with an acute angle. This wedge
structure has been observed in experimental realizations of
gravity currents in tanks. Different examples drawn from
various flow conditions in the laboratory and in nature
clearly demonstrate the existence of wedge-like fronts
contrasting with the Benjamin assumption. For instance,
in the experiments conducted by Simpson [1972; see also
Simpson, 1997], the development of the flow patterns was
made visible by using a blend of dense fluid and fine
aluminum particles: a stretching vortex occupying the tip
region was clearly observed at the leading edge and pro-
duced an intense roll-up of fine aluminum particles, which
makes it possible to visualize the streamlines and the two
vortices; in the upper part of the head, a counterclockwise
rotating vortex occurred. The free surface close to the front
was clearly a straight line. At the junction between the head
and the body, there was a sudden decrease in the flow depth.
This flow structure is very close to the one exhibited by the
Saint-Venant equations in our numerical applications. The
shape of the front is, to some extent, very surprising because
laboratory experiments revealed that the tip region is
characterized by a significant vorticity.
[41] The results presented in this paper are borne out

by experimental realizations of the flows. In particular,

Maxworthy [1983] conducted experiments on two-dimen-
sional gravity currents inside a horizontal tank, with vari-
able inflow at the inlet. By imposing a power law inflow
rate in the form q / tn�1, he observed that the total length of

the current varies as t
1
3
nþ2ð Þ

in line with the scaling found here.

For n =
7

4
, he reported the spreading rate of the front, but

since he did not specify the boundary conditions (Froude
number, initial flow depth), a direct comparison with his
data was not possible.
[42] Another remarkable result of this investigation is that

it was not possible to construct a solution when g > 1
everywhere, whereas if we assumed that the hydraulic jump
modified the velocity profile and the Boussinesq coefficient
g dropped to unity within the head, we were able to
construct a piecewise continuous solution. The method
proposed by Gratton and Vigo [1994] encountered similar
difficulties since it was not possible to find numerical
solutions when g > 1. This clearly shows that minute
changes in the value of g markedly affect the structure of
the solutions to the Saint-Venant equations, whereas there
were few changes in the front position. An increase in g by
5% caused a 2% increase in xf. In their investigation of the
dam break problem, Hogg and Pritchard [2004] arrived at
the same conclusion: if g > 1 everywhere, the solution close
to the front departs significantly from the Ritter solution
since the flow depth never vanished. To enforce a zero flow
depth at the front, the Boussinesq coefficient must drop to
unity or one must account for energy dissipation within the
tip region by adding a bottom frictional force [Hogg and
Pritchard, 2004; Montgomery and Moodie, 2001]. Physi-
cally, this condition on g within the head can be understood
in noting that the vortices observed experimentally contrib-
ute to making the vertical velocity profile more uniform.

9. Conclusion

[43] The goal of this paper was to find similarity solutions
to the Saint-Venant (shallow water) equations when the
boundary conditions at the front impose a zero flow depth,
i.e., for non-Boussinesq flows for which the resisting effects
of the surrounding fluid are negligible. The solutions to the

Figure 6. Variation in the current volume as a function of
the position of E: the dots represent the numerical
simulations, while the horizontal solid line stands for the
expected value given by equation (8). Computation is made
for n = 5/2, a = 2.76, A = 1, and g = 1.05.
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Saint-Venant equations were constructed by making use of
the phase plane formalism and seeking similarity forms in a
way similar to earlier investigations [Grundy and Rottman,
1986; Gratton and Vigo, 1994].
[44] When there is shear in the vertical velocity profile

(i.e., Boussinesq coefficient in excess of unity), it was not
possible to find a physically admissible solution for the tip
region because the downstream boundary condition cannot
be satisfied. Assuming that the velocity profile becomes
uniform close to the front makes it possible to construct a
physically admissible solution. In that case, the front is
wedge shaped, with a straight free surface. Field observa-
tions and laboratory experiments are in agreement with this
result.
[45] An important point that does not seem to be noted in

the earlier investigations is that the integral path represent-
ing the behavior of the solution close to the front is an
exceptional solution to the Saint-Venant equations, which
cannot be derived by standard techniques. This topological
structure of the similarity solutions in the front vicinity
requires that a specific numerical method be used to
compute accurate solutions to Saint-Venant equations and
explains why the current numerical methods fail to accu-
rately predict the behavior close to the front.
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